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Thermodynamic framework for discrete optimal control in multiphase flow systems

Stanislaw Sieniutycz*
Faculty of Chemical Engineering, Warsaw University of Technology, 1 Warynskiego Street, 00-645 Warsaw, Poland

~Received 5 March 1999!

Bellman’s method of dynamic programming is used to synthesize diverse optimization approaches to active
~work producing! and inactive~entropy generating! multiphase flow systems. Thermal machines, optimally
controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating
wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete
optimization algorithm of Pontryagin’s type, with the maximum principle for a Hamiltonian. The extremal
structures are always canonical. A common unifying criterion is set for all considered systems, which is the
criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a
different way for each group of the processes considered; thus the resulting structures of these functionals may
differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in
optimally controlled systems.@S1063-651X~99!14508-2#

PACS number~s!: 05.70.Ln, 47.27.Te, 44.30.1v
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I. INTRODUCTION: DYNAMIC PROGRAMMING FOR
THERMODYNAMIC OPTIMIZATION

In this paper we present a synthesis of dynamic optim
tion approaches to active~work producing! and inactive~me-
chanical energy degrading! multiphase flow systems. Th
mathematical framework is essentially Bellman’s method
dynamic programming and associated maximum princip
Endoreversible multistage processes which yield maxim
mechanical work, optimally controlled unit operations th
minimize energy costs, spontaneous relaxation processe
wards equilibrium, thermal rays, and self-propagat
reaction-diffusion fronts are all shown to satisfy a discr
algorithm of Pontryagin’s type, with the maximum princip
for a Hamiltonian with respect to controls. The minimu
entropy generation is a common unifying criterion; the e
tremal structure is always canonical. Both multistage a
continuous processes are considered; all discrete charac
tics reach their continuous counterparts in the limit of
infinite number of stages. The dynamic programming
proach ~DP! leads to a discrete Hamilton-Jacobi-Bellm
equation, a discrete canonical set, and extends to disc
finite-stage processes Pontryagin’s classical method in w
a HamiltonianH is maximized with respect to controls. Op
timal performance functions~which describe extremal work
minimal entropy generation, minimum resistance, etc.! are
found in terms of end states, process duration, and numb
stages. Alternatively, the Legendre transforms of the orig
functions with respect to the time can be generated; in
case the optimal functions are found in terms of end sta
Hamiltonian, and number of stages. We also predict that
theory could be of use for quantum phenomena and for
multistage cooling processes necessary to reach conditio
which quantum effects become observable in cold syste

Despite a common mathematical framework, optimizat
goals are quite different for the variety of the processes c
sidered. For a class of energy-converting endoreversible
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cesses, the principal goal is to determine bounds for w
produced by an engine system or consumed by a heat-p
system in high-rate regimes. For a class of optimally co
trolled unit operations, the principal goal is to find optim
controls and optimal trajectories which minimize ener
costs, whereas the optimal data of these costs may b
secondary importance. For a class of spontaneously rela
nonequilibrium processes, whose dynamics are known,
principal goal is to form the entropy production function
which assures that dynamics. For inhomogeneous h
conducting solids, the principal goal is to assess nonlin
effects caused by spatially distributed thermal resistan
For the self-propagating reaction-diffusion fronts with kine
ics governed by the mass action law and diffusion-react
couplings, the principal goal is to transform an exact fie
model into an optimal lumped model which satisfies the s
ond law in terms of relationships for wave fronts and rays,
an admissible approximation.

It is worth noting that the analytical expressions whi
describe the formal Lagrangians in terms of the state
control variables are different for each class investigated,
so are resulting equations of optimal dynamics. This pro
that, while the entropy production can be accepted as a g
erning quantity, in each of the considered cases constra
modify resulting functionals in a different way, or, formall
speaking, the entropy generation minimization always wo
with different subsets in the state space. Practical aspec
the theory are illustrated by optimization of multistage th
mal machines and heat and mass heat exchangers, espe
for processes of fluidized bed evaporation from porous s
ids. Applications also involve a finite-size extension of t
classical problem of minimal work to discrete processes.

To derive necessary optimality conditions for both co
tinuous and discrete processes, Bellman’s method of
namic programming~DP! is applied@1,2#. An original dis-
crete approach to sequential systems allows us to pass
DP results to the discrete maximum principle, which is a
other powerful computational tool. To accomplish the mu
stage optimization, it is essential to define a class of disc
optimal control processes linear with respect to the reside
1520 © 1999 The American Physical Society
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time interval. With the discrete version of Bellman’s d
namic programming, necessary conditions of optimality ar
in a form which contains an equation of Hamilton-Jaco
type with a delayed time argument. To overcome difficult
associated with solving equations of this sort, the neces
conditions are transformed to a form governed by a disc
Hamiltonian. It is then shown that, in multistage autonomo
systems, a Pontryagin-like Hamiltonian emerges, which
constant along an optimal discrete trajectory. From a ph
cal standpoint, this constant Hamiltonian condition is a g
eralization of the energy conservation condition to optim
discrete systems with free intervals of time. On this basi
discrete canonical formalism, strongly analogous to thos
analytical mechanics and the theory of optimal continuo
systems, is introduced and applied for the multistage opti
zation.

Bellman’s principle of optimality is crucial for both th
existence of the optimal performance functions and the d
vation of the pertinent dynamic programming equatio
which describe these functionals. When the optimal per
mance function is generated in terms of the initial states
initial time, the principle of optimality may be stated as fo
lows: In a continuous or discrete process, which is descri
by an additive performance criterion, the optimal strate
and the optimal profit function are functions of the initi
state, initial time, and~in a discrete process! the total number
of stages. Therefore, each final segment of an optimal p
~continuous or discrete! is optimal for its own initial state
and initial time and~in a discrete process! the corresponding
number of stages. The proof of this formulation is by co
tradiction; it uses the additivity property of the performan
criterion.

The formulation of the principle of optimality, state
above, refers to the so-called backward algorithm of the
method. In this algorithm, the recursive optimization proc
dure that solves Bellman’s functional equation begins at
final process state and terminates at its initial state. The
cess to which this is applied may be arbitrary: it may
discrete by nature or may be obtained by discretizing
original continuous process. The state transformations p
sess, in this algorithm, their most natural form, as they
scribe output states in terms of input states and controls
stage. The optimization at a stage and the optimal functi
do recursively involve the information generated in earl
subprocesses. It is well known@3# that, in the continuous
case, this method leads to a basic equation of optimal c
tinuous processes, which is the so-called Hamilton-Jac
Bellman equation. However, a similar equation can be
rived only for special discrete processes, those which
linear in the free time intervalsun. The optimality principle
makes it possible to replace a simultaneous evaluation o
optimal controls by a sequence of local evaluations of o
mal controls at stages, for evolving subprocesses.

On the other hand, the optimal profit function can be g
erated in terms of the final states and final time. The o
mality principle has then a dual form: In a continuous
discrete process, which is described by an additive per
mance criterion, the optimal strategy and the optimal pr
function are functions of the final state, final time, and~in a
discrete process! the total number of stages. Thus each init
segment of the optimal path is optimal for its own final sta
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and final time and~in a discrete process! the corresponding
number of stages.

The dual formulation refers to the so-called forward alg
rithm of the DP method, which we apply here to multista
processes. In this algorithm, recursive optimizations t
solve the functional equation begin at the initial state a
terminate at its final state. The state transformations have
form which describes state inputs in terms of state outp
and controls at a stage. While this is not the most typi
representation of the state transformations, it is directly
tainable for multistage processes with an ideal mixing at
stage. On the other hand, inverse transformations~used in the
backward algorithm! may be difficult to apply in an explicit
form. With the forward DP algorithm, local optimization
proceed in the direction of real time.

II. HAMILTON-JACOBI-BELLMAN EQUATIONS
FOR CONTINUOUS SYSTEMS

In many physical phenomena and processes in prac
systems, a general problem of optimal control can be as
ciated with the Bolza form of the performance index,

S5E
t i

t f

f 0~x,t,u!dt1G„xf~ t f !,t f
…2G„xi~ t i !,t i

…, ~1!

wheref 0 is the profit intensity andG(x,t) is a gauging func-
tion that depends on the statex and the timet. For Eq.~1!, a
maximum of the criterionS is sought with respect to a suit
able choice of the vector functionsx(t) andu(t). The func-
tion G influences an optimal solution only if some of the e
coordinates of the state vector or time are undetermin
Working with all initial coordinatesxi and initial timet i as
independent variables, we can generate a function descri
the maximum value ofS in terms ofxi and t i . This is called
the original optimization problem. However, one can a
consider the maximum ofS as a function generated in term
of the final coordinates and final timexf andt f . This is called
the dual optimization problem. It is insightful to confron
properties of the original problem with those of the du
problem. For this purpose, we introduce the optimal perf
mance functionV(xi ,t i ,xf ,t f),

V~xi ,t i ,xf ,t f ![maxS

5maxH E
t i

t f

f 0~x,t,u!dt1G~xf ,t f !2G~xi ,t i !J .

~2!

The functionV describes the maximum ofS in terms of the
end states and end times, and it is common for both
original and the dual problem.

The optimization in Eq.~1! is subject to constraints resul
ing from a set of differential equations,

dxi

dt
5 f i~x,t,u!, ~3!

where x5(x1 ,x2 ,...,xi ,...,xs) is the s-dimensional state
vector andf5( f 1 , f 2 ,...,f i ,...,f s) is the vector of rates. The
r-dimensional vectoru5(u1 ,u2 ,...,ur) is the control vector.
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The admissible control usually satisfies certain local c
straints, the most typical being

u~ t !PU, ~4!

whereU is an admissible set in the control space. There m
also be some additional constraints which link coordinate
the state vector,x, and the control vector,u. They are usually
of the typeg(x,u,t)50 or g(x,u,t)<0. However, they may
be included into the model by using Lagrange multipliers
special sort of control variable which resides linearly in t
model. These multipliers will increase the dimensionality
u without changing the general structure of the model, giv
above. Thus the model~1!–~4! is sufficient for general con
siderations. To include the time coordinate into the state v
tor, we can use the enlarged (s11)-dimensional vector of
state x̃5(x1 ,x2 ,...,xi ,...,xs ,xs11) in which casexs11[t

and (s11)-dimensional vector of rates f̃
5( f 1 , f 2 ,...,f i ,...,f s , f s11) with f s11

n 51.
The use of Bellman’s optimality principle for continuou

systems is known from many sources@1,3–6#. MaximizingS
along a trajectory that starts at (xi ,t i), the principle yields the
so-called Hamilton-Jacobi-Bellman equation~HJB equation!

max
ui

H f 0
i 1(

i 51

n
]P

]xi f i1
]P

]t i J 50, ~5!

where

P~xi ,t i ,xf ,t f ![G~xi ,t i !2G~xf ,t f !1V~xi ,t i ,xf ,t f !. ~6!

~Of course,P[V whenG50.) Expressing a HJB equatio
in terms ofP rather thanV is convenient, becauseP summa-
rizes all gauging effects.

Now, we consider an optimal trajectory which terminat
at (xf ,t f). The optimality principle yields the HJB equatio
in the form

max
uf

H f 0
f 2(

i 51

n
]P

]xf f f2
]P

]t f J 50. ~7!

We can interpret the meaning of extremum operations
HJB equations as a maximization of the profit intens
gauged by the total derivative of the optimal performan
functionP. A mnemonic rule is helpful which states that th
total differentiation ofP is allowed at the end of the proces
where the complete state can be fixed~cannot be optimized!,
and that this differentiation yields the related HJB equati

It is also worth noting that the optimal functionV, Eq.
~2!, that is related directly to the original criterionS, can be
used to yield the HJB equation. Indeed, we find from E
~5!–~7!

max
uf

H f̃ 0
f 2(

i 51

n
]V

]xf f f2
]V

]t fJ 5max
ui

H f̃ 0
i 1(

i 51

n
]V

]xi f i1
]V

]t i J
50, ~8!

where in either case a gauged profit intensity
-
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f̃ 0~x,t,u![ f 0~x,t,u!1]G/]t1(
i 51

s
]G

]xi
f i~x,t,u! ~9!

appears in a HJB equation describingV.
The HJB equation is a quasilinear partial different

equation with the extremizing sign that governs the char
teristic functionsP or V via the controlu, which achieves the
optimization. The definition of the performance potentialV
in Eq. ~2! is the most suitable to processes producing a pro
in which caseV is positive. For processes described in ter
of cost, the most suitable definition assuring a positive
tential involves an optimal functionR, which is the negative
of V. Indeed, for an arbitrary functionalS and the same end
states and times,

R[min~2S@ x̃i ,x̃f #!52maxS@ x̃i ,x̃f #52V, ~10!

where tildes refer to the enlarged vector of state that inclu
the timet. Thus, the single external functionV(t i ,xi ,t f ,xf) is
sufficient to describe the extremum of the functionalS. In
analytical mechanics such equations are usually derived
the method of variational calculus@7#. The DP approach al-
lows for more general derivations, which take into accou
local constraints imposed on control variables, Eq.~4!. Our
treatment here develops a search for properties and imp
tions of HJB equations in physics, chemistry, and thermo
namics of multiphase systems. For discrete problems,
dynamic programming will effectively be applied in the ne
section.

The partial derivative of the characteristic functionV with
respect to time can be taken out of the bracket of a H
equation, and the indicesf or i are conveniently omitted in
equations of this sort for various end states. Changing
signs of extremized expressions, whenever the change o
extremum operation takes place, yields in terms of fi
states and times

]V

]t
1min

u
H ]V

]x
•f~x,t,u!2 f̃ 0~x,t,u!J

[
]R

]t
1max

u
H ]R

]x
•f~x,t,u!1 f̃ 0~x,t,u!J 50. ~11!

In terms of initial states and times we find similar relatio
ships. Note that functionsR represent extremum actions o
classical mechanics, wherel̃ 0(x,t,u)[2 f̃ 0(x,t,u) is a La-
grangian@8#.

In all HJB equations, the extremized expressions
Hamiltonians. In fact, they are ‘‘nonextremal’’ Hamiltonian
of Pontryagin’s type. The optimal controlu, which solves the
optimal work problem, is chosen in order to extremize t
Hamiltonian at each point of the extremal path, which mea
extremizing a wave-front velocity in the HJB equation. T
power of approaches based on the HJB equation is cause
the fact that theoptimal performance functions satisfy thi
equation with the same state variables as those found in
related unconstrained problem. Only dimensionalities a
numerical values of optimizing control sets and the nume
cal values of the functionsP or V may differ in constrained
and unconstrained cases. Methods which serve to obtain
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lutions of a HJB equation can be both analytical and num
cal. For some special models, e.g., for thermal machines
heat transfer, solutions can be obtained analytically. A s
dard numerical procedure, which works with Bellman’s r
currence equation, is the most usual tool to solve a H
equation in the case of low dimensionality of the state vec
@1,9#.

III. TRANSITION TO HAMILTON-JACOBI EQUATIONS
IN CONTINUOUS SYSTEMS

We now consider a transition to a Hamilton-Jacobi eq
tion for Eq. ~11!. For a definite physical problem, a sing
common formula can summarize the effect of varying
final states and final time and that of initial states and ini
time. To derive the formula, we first need to define an adjo
vector, p, as the negative partial derivative2]V/]x when
the variedx is the final statexf . It may be realized that thes
adjoints, resembling mechanical momenta, do not coinc
with other possible adjoints, based on gradients of the fu
tion P, which can also be used. An important fact is t
equality]V/]xi52]V/]xf arising whenever two end state
xi andxf tend to coincide. This proves that both derivativ
]V/]xi and2]V/]xf ~or ]P]xi and2]P/]xf) represent, in
fact, the same physical quantity. Thus, it is enough if we t
Eq. ~11!, which deals with final states and times.

For the process Lagrangians, i.e., the integra
l̃ 0(x,t,u)[2 f̃ 0(x,t,u), the extremum conditions in Eqs.~5!

and ~7! determine the link between the derivatives] f̃ 0 /]u
~or 2] l̃ 0 /]u) and the state adjointsp52]V/]x. The for-
mulas that follow refer to the final-state variations in E
~11!. Its extremizing with respect to the controlu ~in fact uf)
leads to two equations. The first express the optimal con
u throughx, t, and2]V/]x; for an unconstrained vectoru,

]V

]x
5

] f̃ 0~x,t,u!

]u
~12!

and the second is the original equation~11! without the ex-
tremizing sign; in terms ofV,

]V

]t
1

]V

]x
•f~x,t,u!2 f̃ 0~x,t,u!50. ~13!

With the momentum-type variablep[2]V/]x5]R/]x and
Eq. ~12! written in the form

p52
] f̃ 0~x,t,u!

]u
5

] l̃ 0~x,t,u!

]u
, ~14!

we can solve Eq.~14! in terms ofu to obtain the function
u(p,t,x). When we substitute this function into Eq.~13!, an
energylike Hamiltonian of the extremal process emerges

H~x,t,p![p•f~x,t,p!1 f̃ 0~x,t,p!5p•f~x,t,p!2 l̃ 0~x,t,p!.
~15!

This structure is also valid for the extremal functionH if the
controlu is constrained, i.e., when the link betweenp andu
is no longer given by Eq.~14!. Along with the HJB equation
~11!, the definition assures thatH has a positive maximum in
i-
th
n-
-
B
r

-

e
l
t

e
c-

st

s

.

ol

an extremal process. Yet, for the samex, the numerical val-
ues ofH may be different when the process evolves from
statexi to the statexf and then goes back, fromxf to xi , in
the same amount of time. With the optimalH and usingp
[2]V/]x in Eqs. ~13! and ~15!, we obtain the Hamilton-
Jacobi equation for the characteristic functionV:

2
]V

]t
1HS x,t,2

]V

]x D50. ~16!

This form refers to variations of final states and times. W
can express Eq.~16! also in terms of the derivatives]R/]x,
replacing2]V/]x. Equation~16! differs from its HJB equa-
tion insofar as it refers only to extremal paths andH is the
extremalHamiltonian. This equation should be solved su
ject to the boundary condition

lim
x˜xi

V~xi ,t i ,x,t !50. ~17!

Associated with the canonical set, the free boundary con
tion forH andp follows from the definition ofV5maxS in
the form2H5pt52]V/]t50 andp52]V/]x50. How-
ever, in terms of the potentialP, Eq. ~6!, the free boundary
conditions are different; the condition]V/]t50 implies
]P/]t5]G/]t at the initial point and]P/]t52]G/]t at the
final point. Thus, we find]P/]t52]G/]t and ]P/]x5
2]G/]x for variations that refer to the final points.

When the vector of initial valuesx(t i)5xi is given, the
functionV(xi ,t i ,x,t) is determined as the solution to Eq.~16!
in terms of the final states. The optimal trajectory, or t
vector x(t), is then found from the initial relationshippi

5]V/]xi , which yieldsx5x(t,t i ,xi ,pi). Otherwise, the ad-
joint vector follows for current states in the formp5
2]V/]x; this yields p5p(t i ,xi ,t,x). Substituting into the
latter expression the trajectoryx5x(t,t i ,xi ,pi), we find the
evolution of p in time; p5p(t,t i ,xi ,pi). Thus, we obtain
both the optimal trajectory and the adjoint vector as fun
tions of the current timet and the initial values (t i ,xi ,pi).

IV. DISCRETE THEORY OF PONTRYAGIN’S TYPE
WITH OPTIMAL INTERVALS OF TIME

Now we shall outline an analogous theory for multista
processes: a discrete optimization theory based on the
called discrete maximum principle with a constant Ham
tonian @5,10–12#. The previous continuous theory will ap
pear as the limit of the discrete theory for an infinite numb
of stages. Still, our approach will made it possible to tre
multistage processes with a small number of finite stag
These latter processes are discrete by nature; they occ
many engineering systems, e.g., cascades of extrac
evaporators, fluidized dryers, multistage thermal machin
etc. A continuous-discrete analogy is derivable for discr
models which are linear with respect to a particular unc
strained control variable. This control may be an unco
strained interval of one of the state variables, especially
interval of time,un, or an interval of a length. The model’
linearity with respect toun is crucial for the formal similarity
of the necessary optimality conditions in discrete and c
tinuous processes because, broadly speaking, this line
eliminates the second order and higher terms in Taylor
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pansions of characteristic functions for discrete proces
The standard discrete theory of optimal control@13,14# does
not predict a special similarity between discrete and conti
ous cases. This is why such characteristic features of
continuous theory as constancy of an autonomous Ha
tonian or a Hamilton-Jacobi equation remainded unknown
discrete systems for a long time. However, when a disc
model has a structure linear inun, a remarkable discrete
continuous analogy emerges. In particular, discrete opti
functions satisfy Hamilton’s and Hamilton-Jacobi forma
isms and a discrete maximum principle emerges in a fo
analogous to that known for continuous systems. An ana
cal theory of discrete optimization is given below.

To develop an analogy with Eq.~1!, we consider the dis-
crete Bolza functional,

SN[ (
n51

N

f 0
n~xn,tn,un!un1G~xN,tN!2G~x0,t0!. ~18!

The optimization in Eq.~18! is subject to constraints resul
ing from difference equations,

xi
n2xi

n215 f i~xn,tn,un!un, tn2tn215un, ~19!

where x5(x1 ,x2 ,...,xi ,...,xs) is the s-dimensional state
vector andf5( f 1 , f 2 ,...,f i ...,f s) is the vector of rates. The
r-dimensional control vectoru5(u1 ,u2 ,...,ur) is con-
strained, i.e.,

unPU, ~20!

whereU is the admissible set in the control space. Gener
zations are possible to include local constraints on the s
and controls in the way described for the continuous cas

The optimization problem can be stated as that of ma
mizing S for n5N when the initial point (x0,t0) is fixed.
However, a difficulty arises if we want to obtain a differen
analog of Eq.~9!; in fact, it is not clear whether such a
analog exists, because the differential calculus cannot be
plied to finite differences in the discrete case. It is precis
for this reason that we prefer to use the potential functioP
rather thanV when discrete processes are analyzed. It is a
essential to recognize the importance of the necessary
mality condition for free intervals of time,un, which yields a
vanishing ‘‘enlarged Hamiltonian,’’ and the significance
generalization of Bellman’s recurrence equation into the
called stage criterion. The latter includes variations of e
states and times, thus yielding simultaneously the disc
characteristics and the conditions for an optimal control.
concentrate here on the dual problem in which a maxim
of S is sought at a fixed final point (xN,tN), subject to the
constraints set by Eqs.~19! and ~20!.

We define the optimal performance function of the d
crete problem,

VN~x0,t0,xN,tN!

[maxH (
n51

N

f 0
n~xn,tn,un!un1G~xN,tN!2G~x0,t0!J .

~21!
s.
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An alternative definition ofV states this function in the form

Vn~x0,t0,xn,tn![maxH (
k51

n

@ f 0
k~xk,tk,uk!uk

1G~xk,tk!2G~xk21,tk21!#J
5maxH (

k51

n F f 0
k~ x̃k,uk!

1
G~ x̃k!2G~ x̃k2 f̃k~ x̃k,uk!uk!

uk GukJ
[maxH (

m51

n

f̃ 0
kukJ , ~22!

where f̃ 0
k is the gauged profit intensity, a discrete analog

that in Eq.~9!.
To solve the optimization problem, a generalization

Bellman’s recurrence equation to the form of the so-cal
stage criterion@5# is essential,

max
un,un,xn,tn

$ f 0
n~xn,tn,un!un2@Pn~xn,tn!

2Pn21
„xn2f n~xn,tn,un!un,tn2un

…#%50, ~23!

where, by definition,

Pn~x0,t0,xn,tn![G~x0,t0!2G~xn,tn!1Vn~x0,t0,xn,tn!.
~24!

With Eq. ~23!, a complete set of necessary optimality con
tions is determined, including those with respect to statexn

and time tn ~see Ref.@6# for an analogous continuous ap
proach!. Equation ~23! yields all relevant information: it
leads to HJB equations, definition ofH, state adjoints, and
canonical set. Bellman’s equation follows from the criteri
~23! for the fixed final state and time,

Pn~xn,tn!5 max
u n,un

$ f 0
n~xn,tn,un!un

2Pn21
„xn2f n~xn,tn,un!un,tn2un

…%. ~25!

Equation~25! is in the ‘‘forward’’ form; its backward coun-
terpart represents the most popular form of recurrence e
tions for multistage optimization. Starting withV050, the
sequenceV1,...,VN is found by a well-known iterative pro
cedure@2,9#, in which extremizing is with respect to contro
at the constant coordinates (xn,tn). Analytical solutions are
rare. For example, an analytical solution to Eq.~25! exists
for a cascade of thermal engines; see Sec. VI.

Let us first fix statexn and timetn in Eq. ~23!, or, equiva-
lently, deal with Eq.~25!. For an unconstrainedun and con-
strainedunPU, these equations yield the following set o
necessary conditions of optimality:

f 0
n~xn,tn,un!un2@Pn~xn,tn!

2Pn21
„xn2f n~xn,tn,un!un,tn2un

…#50, ~26!
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f 0
n~xn,tn,un!2

]Pn21

]xn21 •f n~xn,tn,un!2
]Pn21

]tn21 50, ~27!

and

H ] f 0
n~xn,tn,un!

]un 2
]Pn21

]xn21 •

f n~xn,tn,un!

]un J •dun<0. ~28!

The weak maximum condition with respectun, which fol-
lows as the necessary condition for the negative variation
S, is sufficient in applications in most practical cases.

Equation~27! is the stationarity condition for the optima
intervalsun. Wheneverun is finite and positive, then it fol-
lows from Eqs.~26!–~28! that Eq.~28! can be derived from
the following maximum condition:

max
un

H f 0
n~xn,tn,un!2

]Pn21

]xn21 •f n~xn,tn,un!2
]Pn21

]tn21 J 50.

~29!

This is a discrete HJB equation which represents a w
maximum principle with respect toun for the ‘‘enlarged
Hamiltonian’’

H̃n215 f 0
n~xn,tn,un!2

]Pn21

]xn21 •f n~xn,tn,un!2
]Pn21

]tn21 ,

~30!

wherePn is defined by Eq.~24!. Equation~29! states that the
necessary condition for the maximum ofSN with respect to
the control sequence$un% is that for the enlarged Hamil
tonian ~30!. As f s11(51) is u-independent, the optimality
condition ~29! can also be expressed in terms of an ener
like Hamiltonian that has excluded the partial derivative
Pn21 with respect totn21,

Hn21S xn,tn,2
]Pn21

]xn21 ,unD[ f 0
n 2(

i 51

s
]Pn21

]xi
n21 f i

n . ~31!

Equation~31! rejects theu-independent term]Pn21/]tn21

from the Hamiltonian~30!.
When the optimal controlun is evaluated from Eq.~28!

and substituted into Eq.~27!, the latter becomes a discre
Hamilton-Jacobi equation,

2
]Pn21

]tn21 1Hn21S x1
n ,...,xs

n ,tn,2
]Pn21

]x1
n21 ¯2

]Pn21

]xs
n21 D 50,

~32!

which is nonlinear in terms of the derivatives]Pn21/]xn21.
It is written for theextremum Hn21 of the Hamiltonian func-
tion of energy type, Eq.~31!, rather than in terms of the
enlarged HamiltonianH̃n21. In the limiting case of an infini-
tesimal sequence ofun, this equation yields the Hamilton
Jacobi equation of corresponding continuous process, co
tent with Eq. ~16!. Note that for the gauging functionG
50, the limiting form of Eq.~32! coincides with Eq.~16!.

The state adjoints are now defined as

z1
n21[2

]Pn21~xn21!

]xi
n21 5

]Kn21~xn21!

]xi
n21 ~33!
of

k

-
f

is-

( i 51, . . . ,s,s11). HereKn[2Pn is the costlike optimal
function. In terms of the state and adjoint variables,
Hamiltonian~30! is

H̃n21~xn,tn,zn21,zt
n21,un![ (

n50

s11

zn
n21f n

n5z0
n21f 0

n

1(
i 51

s

zi
n21f i

n1zt
n21, ~34!

where z0
n2151, zi

n2152]Pn21/]xi
n215]Kn21/]xi

n21,
zs11

n21[zt
n2152]Pn21/]tn215]Kn21/]tn21, and f s1151

for i 51,2, . . . ,s and n51,2, . . . ,N. This Hamiltonian has
to attain a maximum with respect to the controlsun which
maximize a performance index of the profit type, such as
production criterionSN, whose optimal functionPn satisfies
Eq. ~24!. In an equivalent formulation, we minimize a pe
formance index of the cost type, such as the consump
criterion (2SN), whose optimal functionKn52Pn. The
Hamiltonian ~34! is a basis for the method using canonic
equations, which emerges from the stage criterion~23! as
shown below.

Let us now fix controlsun andun in Eq. ~23! and differ-
entiate the expression in curly brackets of this equation
determine its stationarity conditions with respect to the fi
state and time. We obtain an optimal difference set which
canonical with respect to two sorts of equations, one defin
the changes of state and the other the corresponding cha
of the adjoint variables. Using the most popular energyl
Hamiltonian, Eq.~31!, expressed in terms of the adjoint var
ables.

Hn21~xn,zn21,un,tn![ f 0
n~xn,un,tn!1(

i 51

s

zi
n21f i

n~xn,un,tn!,

~35!

the algorithm of the discrete maximum principle is repr
sented by the equations

xi
n2xi

n21

un 5
]Hn21

]zi
n21 , ~36!

zi
n2zi

n21

un 52
]Hn21

]xi
n , ~37!

zt
n2zt

n21

un 52
]Hn21

]tn , ~38!

and

zt
n211max

un

Hn21~xn,zn21,un,tn!50 ~39!

(n51, . . . ,N; i 51, . . . ,s and l 51, . . . ,r ). As shown by
Eq. ~28!, the weak or local maximum conditions in Eqs.~29!
and~39! can be proven easily, otherwise the strong or glo
maximum condition requires a subtle proof of validity of E
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~29! in the whole admissible region ofu, Eq. ~20!; for this
issue, see Ref.@15, 16#. Nonetheless, it is the weak max
mum principle which is sufficient in most applications.

Equation ~36! constitutes the Hamiltonian form of th
state equations, and Eq.~37! is its adjoint equation. Equation
~38! describes the Hamiltonian interval at the stagen,
whereas Eq.~39! states that in an extremal process the
larged HamiltonianH̃n215Hn211zt

n21 is always constan
and equals zero. Equation~39! includes the necessary cond
tion for the stationary optimality of the decision vectorun if
its optimal value falls in the interior of the allowable rang
U. Quite importantly, Eq.~38!, which describes the chang
of the Hamiltonian through a finite stage, does not follow~as
in the continuous version! from the canonical equations fo
xi andzi , but it represents an independent extremum con
tion associated with the optimal choice oftn. In autonomous
systems,Hn5Hn21, i.e., the energylike Hamiltonian is con
stant along an optimal discrete path. In nonautonomous
tems, only the enlarged Hamiltonian~30! is constant of the
optimal discrete motion; the value of this constant alwa
equals zero,H̃n2150.

The boundary conditions are determined as vanishing
tionarity conditions for the extremum ofSN with respect to
end state coordinates and times. By applying Eq.~24!, which
links the functionsV and P, in an equation defining the
variation ofSN caused by end states,

dSN5(
i 51

s11
]VN

] x̃i
N dx̃i

N1(
i 51

s11
]VN

] x̃i
0 dx̄i

0, ~40!

we obtain

dSN5(
i 51

s11 S ]PN

] x̃i
N 1

]G

] x̃i
NDdx̃i

N1(
i 51

s11 S ]PN

] x̃i
0 1

]G

] x̃i
0Ddx̃i

0.

~41!

~In these equations,x̃i
s11[t.) Hence after invoking the defi

nition of adjoint variables, Eq.~33!,

dSN5(
i 51

s11 S ]G

] x̃i
N2 z̃i

NDdx̃i
N1(

i 51

s11 S ]G

] x̃i
02 z̃i

0Ddx̃i
0. ~42!

Setting to zero respective partial derivatives of the perf
mance functionSN for one end, either forn50 or for n
5N, yields for free-end state variables

zi
N5

]GN

]xi
N , iÞb, zi

05
]G0

]xi
0 , iÞa, ~43!

and for free-end timet

HN52
]GN

]tN , H052
]G0

]t0 . ~44!

Equation~43! prescribes boundary conditions for the adjo
vector zn, and Eq.~44! prescribes boundary conditions fo
the HamiltonianHn. As expressed in Eq.~43!, if the bth
component of the final state vector,xi

N , or theath compo-
nent of the initial state vector,xi

0, is fixed, the respective
component of the adjoint vector,zb

N or za
0, is undetermined.
-

i-

s-

s

a-

-

t

Likewise, if the boundary time,tN or t0, is fixed, the respec-
tive Hamiltonian,HN orH0, is undetermined. WhenN tends
to infinity, the discrete algorithm becomes that of Pontry
gin.

V. OUTLINE OF THE COMPUTATIONAL APPROACH

Now we shall describe the basic principles of solvi
methods. The primary idea is to solve certain underly
equations@such as Bellman’s equation~25!, the stage crite-
rion equation ~23!, or the maximum principle equation
~35!–~39!#, rather than the related HJB equation~29! or
Hamilton Jacobi equation~32!. This is because the solvin
methods for the preferred equations are those most effic
although they still have some shortcomings: DP is restric
to problems with low dimensionality of state, whereas ma
mum principles do not generate optimal profit functions
rectly. The control theory approach used here differs fr
the traditional approach encountered in mechanics, in wh
Hamilton-Jacobi equations are solved@17#.

We begin with the basic numerical method in which t
DP is applied. In the control theory, both continuous a
discrete processes with a single independent variable ca
treated in the framework of a common discrete formalis
As we aim to work with a discrete set of equations, in t
continuous case prior discretizing of the process differen
equations is required. Then, it is appropriate to focus
multistage optimization. Here we describe the generation
the optimal functionVn5maxSas a quantity directly related
to the optimization criterion. Assume that at the stagen, a
profit D̃n5D̃(xn,tn,un,un,n) is given; in our caseD̃n

5 f̃ 0
nun, where tildes over the symbolDn refer to the gauged

profit in Eq.~22!, and hence to the optimal functionVn rather
than Pn. ~To deal with the optimal functionPn, the bare
profit Dn5 f 0

nun should be used.! The total profit of the

n-stage subprocess isSD̃k5S f̃ 0
kuk, for k51,2, . . . ,n. With

the state equations and local constraints at our disposal,
data of D̃n—analytic, graphic, or tabular—are sufficient.
is, however, important that the data ofD̃n represent this
function completely in terms of the statexn, time tn, and
controls (un,un). Data of optimal functionsV1,...,Vn,...,VN

are generated over subprocesses composed of the s
1, . . . ,n, . . . andN.

For the given set of difference constraints~19!, each profit
function of the problem,Pn or Vn, is found from Bellman’s
equation of dynamic programming, Eq.~25!. This equation
links the optimal functionsVn and Vn21 or Pn and Pn21

with the related profit at the stagen. The simultaneous gen
eration of data forVn andPn is due to the fact that both thes
functions differ by the path-independent increment of t
state functionG. In terms of Vn, as the quantity directly
connected with the optimization criterionS, the recurrence
equation~25! may be written as

Vn~ x̃n!5max
un,un

$D̃n~ x̃n,un,un!1Vn21
„x̃n2 f̃n~ x̃n,un!un

…%,

~45!

where the symbolx̃n denotes the enlarged vector (xn,tn) and
the tilde over the symbolDn refers to the gauged profit in
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cluding the effect of the state functionG. As shown by Eq.
~22!, the gauged profitD̃n5 f̃ 0

nun is a discrete counterpart o
the continuous profit~9!.

By an iterating procedure starting withV050, a function
sequenceVn( x̃)[Vn(x,t) is obtained forn51,2, . . . ,N, as a
solution to Eq.~45!. Organization of computations requires
grid of x̃ in nodes of which data of optimal functions an
optimal controls are computed and stored. A total numbe
stages,N, is assumed. The numerical DP algorithm genera
the potential functionVn( x̃) describing the total profit for the
n-stage subprocess from the functionVn21( x̃) of the n21
stage subprocess and the state transformations, Eq.~19!.
Vn( x̃) is obtained by maximizing the sum of the optim
profit of all previous n21 stages~the optimal function
Vn21) and the nonoptimal profitD̃n at the stagen. To deter-
mine the functionVn( x̃) exactly for a definiten, we would
have to numerically determine its values for every value
x̃, an impossible task. Therefore, we must determine th
values on a discrete subset ofx̃, and use the data in the wa
that enables evaluation ofVn( x̃) everywhere. This is accom
plished by an interpolation. The discrete subset of cont
un is treated in a similar way. For example, when the co
strains imposed onun satisfy the inequalityu* <un<u* , the
tested variablesun may assume only certain discrete value
This refers to the linear grid of controls.

The first optimal function,V1( x̃), and the corresponding
optimal controls forn51 follow from the application of the
initial condition V1( x̃)50 in Eq. ~45!; this yields

V1~ x̃!5max
un,un

$D̃1~ x̃,u1,u1!% ~46!

and

$u1~ x̃!,u1~ x̃!%5arg max
u1,u1

$D̃1~ x̃,u1,u1!%. ~47!

To find these functions, the computer chooses the first po
say x̃5Ad5(A1d,A2d), assumes the firstu5(E1g,E2g),
and compares D̃1(Ad,E1g,E2g) with D̃1

„Ad,(E1
11)g,E2g…, for a fixedu1, in agreement with Eq.~46!. The
larger of these values is stored, and, in turn, compared w
D̃1

„Ad,(E112)g,E2g…. This process is continued until th
whole discrete set of controlsu1 is exhausted. The largest o
the stored values ofD̃1 is the maximum ofD̃1 with respect
to u1 for the fixed discrete pointx̃ and for the fixedu1. At
the same time, the coordinates ofu1 which maximizeD̃1 are
stored. The computations are then repeated for another fi
value of u1, and the best profitsD̃1 are compared until an
optimalu1 is found for whichD̃1 is the largest. This leads t
the absolute maximum ofD̃1 with respect tou1 andu1, for
the fixed discrete pointx̃. The resulting coordinates ofu1

andu1, which maximizeD̃1, are stored.
Analogous operations are next performed forx̃5„(A1

11)d,A2d…, „(A112)d,A2d…, and so on. This leads aga
to the maximum ofD̃1 and the optimal values ofu1 andu1.
The data of the same quantity differ as they refer to vari
f
s

f
se

ls
-

.

t,

th

ed

s

points x̃ ~different nodes of the grid!. The computer outputs
are the DP tables which contain only the optimal da
V1( x̃), u1( x̃), andu1( x̃).

For n52 ~two-stage process!, as well as for the largern,
the procedure is analogous but uses the recurrence equ
~45! in its complete form. The functionVn21 is known in the
form of tables describing the previous computations~for the
cascade withn21 stages!. When its data are used, a diffi
culty can appear, which is called the ‘‘danger of the g
expansion.’’ This means that for some forms of the rate fu

tions f̃ the computation ofVn( x̃) will require the knowledge
of values Vn21( x̃) for x̃ located outside the rangex̃I< x̃
< x̃II , which was required forVn( x̃). Therefore, to evaluate
Vn( x̃) within the required range, it may be necessary to
termine the functionVn21( x̃) within a boundary larger than
that described by the inequalityx̃I< x̃< x̃II .

The procedure leads to the optimal values ofVn, un, and
un for each node of the grid ofx̃, for eachn. These values
are stored as the discrete representations of the optimal f
tions Vn( x̃), un( x̃), and un( x̃). Coordinates of the trans

formed states,Tn( x̃)[ x̃2 f̃ n( x̃,un)un, can also be stored
The computations terminate forn5N. Then, by a backward
procedure which starts from the given final pointx̃N, one
obtains an optimal solution for the sequence of the optim
controlsuN, uN21,...,u1 and uN,uN21,...,u1, and the opti-
mal discrete trajectory,x̃N,x̃N21,...,x̃1,x̃0. The sequence o
the optimal profits describing the whole process and all
subprocesses,VN,VN21,...,V1, also follows.

A virtue of the DP method is that it always leads to t
absolute maximum, and, as opposed to other methods
increase in number of constraints simplifies the numer
solution obtained with a computer~fewer points to be
tested!. The functions describing the profit and state transf
mation need not be continuous or analytical; they may
given in a graphic or tabular form. Also, the two-poi
boundary values do not cause problems, as the recurr
equation is not influenced by boundary conditions. Large
mensionality of the control vector does not cause essen
troubles. There exists, however, a very serious difficulty c
nected with the use of the dynamic programming. This is
so-called ‘‘curse of dimensionality,’’ referred to the larg
dimensionality of the state vector,x̃. Clearly, the number of
computational points, and hence the memory requireme
for the computer, increase tremendously with the state
mensionalitys. Problems withs51 ands52 are quite easy
to solve numerically, problems withs53 may be trouble-
some, problems withs54 are already serious, and problem
with s>5 are practically intractable if good accuracy is r
quired. Thus the numerical dynamic programming can eff
tively be applied only to problems characterized by the sm
dimensionality of the state vectorx̃; problems of large di-
mensionality, such as those encountered in the static opt
zation, are excluded. In the latter case, other methods, e
cially maximum principle algorithms, must be applie
Sometimes, however, a dimensionality reduction is poss
in DP problems. For the problems considered here, a dim
sionality reduction is possible, among others, in autonom
systems, in view of the constancy of the discreteH along an
optimal path.
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For Vn regarded as a production profit, a net econom
profit, or the difference betweenVn and the ‘‘time penalty
cost’’ h(tn2t0), can be defined. We will designate by a
asterisk subscript the modified profits or costs of this s
and will focus on their properties in the case of the const
HamiltonianHn215H. ~This case is both the most impo
tant and the simplest.! Thus, we will deal with optimal func-
tions describing net profitsV

*
n [Vn2h(tn2t0) or with

analogous functions describing net costsR
*
n [Rn1h(tn

2t0), both criteria being equivalent. The quantityh is the
constant numerical value ofHn. It describes the decrease
the process profit when the process time is increased by
unit.

For the net profitD̃
*
n [D̃n2hun the optimal behavior a

the stagen is governed by the sequence of the asterisk fu
tions: V

*
1 ,...,V

*
n ,...,V

*
N21 and V

*
N . An optimal function

obeys the equation

V
*
n ~xn,h!5max

un,un

$D̃*
n ~xn,un,un,h!1V

*
n21

„xn

2f n~xn,un!un,h…%. ~48!

It differs from Eq.~45! by the presence of the vectorx rather
thanx̃[(x,t). Because of the constancy ofHn215h along a
discrete optimal path, the state dimensionality of the prob
described by Eq.~48! is decreased by 1 in comparison wi
that described by Eq.~45!.

The profitsVn and V
*
n preserve a number of the bas

qualitative properties of the~economic! production profits
and the total profits.~In the cost representation this is true f
the optimal cost functionsRn[2Vn and R

*
n [2V

*
n .) For

multistage control processes, the optimal profits generate
the dynamic programming always have the structure of
sequence of functionsVn(x,t) or their dualsV

*
n (x,h). The

profit functions Vn(x,t) and V
*
n (x,h), or cost functions

Rn(x,t) and R
*
n (x,h), which describe production and tota

profits ~costs! of processes with one independent varia
~time or length!, are related by a Legendre transformati
with respect to this independent variable@18,19#. The limit-
ing case of a continuous process is characterized by the f
tions V(x,t) and V* (x,h), which are mathematical equiva
lents of Hamilton’s principal action and the ‘‘abbreviate
action’’ of classical mechanics or related phase functions
optics @8#. The relation between the optimal cost functio
generated by the DP and Pontryagin’s maximum principle
now well understood@20#. The optimal trajectories of a con
trol problem are equivalent to mechanical trajectories in m
chanics or light rays in optics. The use of dynamic progra
ming for constructing the finite-time potentials of discre
and continuous control separation processes has been
marized@5#.

Now we outline the second basic numerical method
applies the discrete maximum principle with the energy-ty
Hamiltonian ~31!. The necessary extremum conditions a
Eqs. ~35!–~39! with un5tn2tn21, whose form suitable for
numerical considerations is

F1~Hn21,xn,zn21,tn,un!50

@definition of Hn21, Eq. ~35!#,
c

t,
t

ne

-

m

by
e

c-

n

is

-
-

m-

It
e

F2~xn,xn21,tn,tn21,un!50

@state equations, Eq.~36!#,

F3~xn,zn,zn21,tn,tn21,un!50

@adjoint equations, Eq.~37!#,

F4~Hn,Hn21,xn,zn21,tn,tn21,un!50

@rate change ofHn21, Eq. ~38!#,

F5~xn,tn,zn21,un!50 @extremality of Hn21, Eq. ~39!#.

These are algebraic equations which should be solved w
computer. Note that in the case of an autonomous proc
Eq. ~38! simplifies to the formHn5Hn21.

Typical optimal control problems lead to two-poin
boundary conditions, and procedures matching these bo
ary conditions should be designed. Contrary to DP al
rithms, two-point boundary conditions increase the difficu
of the numerical solution when the maximum principle
used. Due to a strong analogy with Pontryagin’s algorith
both trial and error procedures which deal with two-po
boundary values and control improvement procedures
identical with those applied in the standard continuous al
rithm @3,4,21#. Methods of trajectory improvement in th
state space and gradient methods in the control space
effective.

Quite generally, an approach transforms Eqs.~35!–~39!
into a final set,

F̃1~xn,xn21,zn,tn!50 ~49!

and

F̃2~xn,zn,zn21,tn!50. ~50!

From this set the state and adjoints before thenth stage,
xn21 andzn21, and all other quantities entering the stagen
are determined, thus the computer may pass to the stan
21. This backward procedure is necessary from the pract
viewpoint in the case of a complex~nonlinear! dependence
of the rate functions on the statexn.

VI. EXTENDED APPLICATION TO MULTISTAGE
THERMAL MACHINES

We begin a brief review of applications of HJB equatio
with multistage systems in which work can be produced
cascade thermal machines operating sequentially betwe
fluid and a bath, i.e., an infinite reservoir. The multista
process is, in fact, a steady sequence of Novikov-Curz
Ahlborn engines~NCA processes@22,23#!. The sequential
NCA process is a finite-stage counterpart of the recently c
sidered continuous process@24#. The system contains th
driving fluid with gradually decreasing temperatur
T1,...,TN; the environment at the constant temperatureTe;
the boundary layers which act as thermal conductances;
the set of the Carnot engines,C1,...,CN, which generate the
mechanical work at each stagen. An analytical formulation
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of the multistage problem deals with maximizing of the wo
criterion

SN5(
1

N

f 0~Tn,un!un[(
1

N

cS Te

Tn1xun21Dunun, ~51!

where the coefficientx5rc/(a8av), r is the fluid’s density,
c its specific heat,a8 the overall heat transfer coefficien
associated with the overall conductanceg, andav is the total
exchange area per unit volume of the fluid@24#. Our task is
to achieve an extension of this problem that could take i
account variability in time of thermal and transfer coef
cients~such as the specific-heat capacityc or the heat trans-
fer coefficienta8) and to include mass transfer. The gaugi
functionG50. The productxun ~in units of the temperature!
equals52qn/gn, where gn is the overall thermal conduc
tance at the stagen andqn is the heat which drives thenth
Carnot engine. The controlun plays the role of the discret
rate of the temperature change of the fluid in timet. The
r
p
T
e

ea

e

o

nondimensional conductanceun/x5gn/(cG) coincides with
the so-called number of transfer units at the stagen, a well-
known engineering quantity.

A generalization of the above equation includes the eff
of mass transfer@25#. In this case the power intensity func
tion f 0

n , which generalizes Eq.~51!, has an involved form.
Some redefinitions are suitable; molar quantities are u
and the Lewis analogy is applied, which links the heat a
mass transfer coefficients. In this case, the functionf 0

n has
units of a molar work, associated with nondimensional tim
t, whose intervalun5gn/G. @A description based on the
usual time requires applyingx5rc/(a8av).# There are two
state variablesT and X ~concentration!, and two controlsu
and v. The first control is related to the heat flux,q5
2gcu, whereg is the mass transfer conductance in mo
units. The second control is related to the molar mass fl
m52gv. For eachn, the intensity of power production pe
unit of t is
f 0~T,X,u,v !5
w

g
5cu2cTv1

g2

g
ceTe2S g2

g
ce2cpv DTe5 S T1S c

g1

g
1cpv D 21

cu

T1
g1

g S c
g1

g
1cpv D 21

cu
D

3S ~11X!~11X!S X1
gv
g1

D @X1~gv/g1!#

XXS 11X1
gv
g1

D @11X1~gv/g1!# D ~g1R/g2ce!S ~11Xe!~11Xe!S Xe2
gv
g2

D @Xe2~gv/g2!#

XeXeS 11Xe2
gv
g2

D @11Xe2~gv/g2!# D ~2g2R/g2ce!

6 .

~52!
e
and

is
con-
ce-

f

-
ions
With this function, applied asf 0
n in the first sum of Eq.~51!,

we can find a maximum for the cumulative mechanical wo
when a finite-resource fluid changes its thermodynamic
rameters in a finite time between two assumed states.
above power formula reduces exactly to that of pure h
transfer when the molar fluxm50 @25#.

For an analytical result, i.e., for the problem of pure h
transfer whose functionf 0

n appears in Eq.~51!, Bellman’s
equation~25! with P[V has recently been solved@26#. The
function of the optimal work production,VN, is

VN52RN5c~T02TN!1cTeNF12S T0

TND 1/NG
2cTe $N@12~T0/TN!1/N#%2

tN1N@12~T0/TN!1/N . ~53!

This potential is associated with constantun,un increasing
linearly with Tn, and the optimal trajectory satisfying th
rule Tn5(Tn21Tn11)1/2 for arbitrary stagesn21, n, andn
11. For the continuous limit we find
k
a-
he
at

t

V52R5c~Ti2Tf !2cTe ln
Ti

Tf2cTe
@ ln~Ti /Tf !#2

t f2 ln~Ti /Tf !
.

~54!

The last terms in Eqs.~53! and~54! are nonclassical; they ar
caused by finite rates which decrease work produced
increase work consumed.

For Eq.~52! only a numerical solution is possible. In th
case a computer procedure generates tables of optimal
trols and optimal costs through a direct extremizing pro
dure contained in the recurrence equation

R
*
n ~Tn,Xn!5 min

un,vn,un

$@2 f 0~Tn,Xn,un,vn!1h#un

1R
*
n21~Tn2unun,Xn2vnun!%, ~55!

where the power functionf 0 is given by Eq.~52! and the
Hamiltonian constanth serves as the Lagrange multiplier o
the time constraint to eliminatetn from the working set of
original state variables. TheX-free truncation of this equa
tion serves to generate numerical generalizations of funct
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~53! and~54! when both the transfer coefficients and the h
capacity vary along the process path, and an analytical s
tion cannot be obtained.

The classical thermodynamic work is recovered in a lim
of a reversible process, for an infinite duration (t*⇒`). The
classical work represents an exact evaluation of the m
mum work production for infinite-size systems only, or f
systems with excellent transfer conditions. This result pro
that classical thermostatic limits are too low to be realis
and finite-time limits should be more useful in practic
evaluations.

VII. DRYING SEPARATION PROCESSES WITH
COMPLICATED EQUILIBRIA

We now consider another group of processes, such
separation processes and chemical reactions which, as a
do not generate mechanical energy although they may y
valuable products. Here we are focused on optimization
complex processes of drying and adsorption which consti
an example of processes described by highly nonlinear s
equations. These processes run frequently in cascades o
ally mixed fluidized beds, and are characterized by stro
nonlinearities following from complex solid-gas equilibr
~sigmoidal curves which do not approach straight lines e
in limiting cases!.

The performance criterion is usually the sum of the e
ploitation costs measured by the available energy~‘‘ex-
ergy’’! of the drying agent and the cascade cost underst
as the investment cost of all stages. Neglecting fixed part
these costs~which do not influence the basic result!, the
profit form of the performance index may be written as

SN[2 (
n51

N

@ebg
n~Tg

n ,Xg
n!1h#un, ~56!

wherebg is the specific exergy of the drying gas ande is the
economic value of the exergy unit. Economic considerati
for fluidized beds link the numerical value of the time co
straint multiplier,h, with the unit apparatus price. Theh part
of the optimization criterion represents the investment co
per mass unit of the dry solid product. An approximate e
pression for the criterion~56! is the quadratic objective with
constantA, B, C, andh,

SN52 (
n51

N

@ 1
2 A~Tg

n2Te!21 1
2 B~Xg

n2Xe!21C1h#un.

~57!

The state variables at the stagen are the outlet solid tempera
tureTs

n and outlet solid moisture contentWs
n . They appear in

the discrete state equations

Ts
n2Ts

n21

un 5cs
21$ i g

n~Tg
n ,Xg

n!2 i s
n~Ws

n ,Ts
n!

2 i w
n
„Xg

n2Xs
n~Ws

n ,Ts
n!…% ~58!

and
t
lu-

t

i-

s
,
l

as
le,

ld
f

te
te

de-
g

n

-

d
of

s

ts
-

Ws
n2Ws

n21

un 5Xg
n2Xs

n~Ws
n ,I s

n!, ~59!

where i w
n is the partial enthalpy of moisture in solid andun

5DGn/S is the gas mass flux through the stagen per unit
solid mass fluxS. The state equations contain the decisi
variablesTg

n andXg
n , and the gas enthalpy functioni g

n which
is evaluated in terms of these decisions. The state equa
contain also complex state dependent equilibrium functi
i s
n(Ws

n ,Ts
n) andXs

n(Ws
n ,Ts

n). They describe the enthalpy an
humidity of gas in equilibrium with solid, and are given b
semiempirical formulas@27#.

The discrete maximum principle, Eqs.~35!–~39!, is used
to solve the problem of minimum cost~56!. The Hamiltonian
function is

Hn21~Ws
n ,Ts

n ,z1
n21,z2

n21,Tg
n ,Xg

n!

[z1
n21cs

21$ i g
n~Tg

n ,Xg
n!2 i s

n~Ws
n ,Ts

n!

2 i w
n
„Xg

n2Xs
n~Ws

n ,Ts
n!…%1z2

n21@Xg
n2Xs

n~Ws
n ,Ts

n!#

2@ebg
n~Tg

n ,Xg
n!1h#. ~60!

For thisH the canonical set~36!–~39! is constructed and its
numerical solution is obtained for optimal controls, optim
trajectories, and optimal costs. Drying of silicagel by air
the three-stage cascade of fluidized beds (N53) is studied
@11,28#. The initial state of solid and the final solid moistu
content are prescribed, whereas the final solid temperatu
free. The multiplier of the process duration,h, which is also
an intensity index of the optimal process, is changed in
range 0.42–4.20 kJ/kg.

The optimal control data show the following propertie
The optimal gas temperaturesTg

n decrease along the optima
path. The optimal gas humiditesXg

n decrease along the opt
mal path. For a very smallh the valuesXg

n attain the limiting
environmental humidity (Xe50.008 kg/kg). The optimal di-
mensionless gas flowsun5DGn/S are unequal along the op
timal path. The largest flows are at the first stage and
lowest at the last stage of the cascade. Each flowun de-
creases whenh increases, corresponding with the increase
the process intensity withh. Otherwise, forh50, very large
un are obtained corresponding to drying of the solid by t
environmental gas.

The optimal trajectories of the controlled drying proce
with a free final temperature of solid depend substantially
the factorh which is the constant of these paths. For smah
~0.42 kJ/kg!, the state transitions are through regimes of lo
temperatures of solid~with possible minima ofTs), consis-
tent with the use of gas with the lower exergy potential~low
Tg and largeXg , which are close to the ambient paramete
Te and Xe). For largeh, the state transitions are throug
higher temperatures of solid, with possible maxima ofTs .
Such solutions apply to the drying of sugar, porous sorbe
andT-sensitive biological materials. These materials sho
be dried relatively fast, but otherwise their final temperatu
should not be too high. The results show that apparatuse
large unit cost should be designed for intensive optimal p
cesses, to assure short process durations, so as to avoid
mistakes in the design of new equipment.
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VIII. TWO-PHASE SYSTEMS SPONTANEOUSLY
RELAXING TO EQUILIBRIUM

Here we are dealing with relaxation processes in wh
state variables are linked by conservation laws for the
ergy, mass, and momentum. For processes of this sor
approach which applies Lagrange multipliers to handle
pendent rates is required. The system contains two phasd
and g which relax to the mutual equilibrium. Applying th
theorem of a minimum of entropy production to the relaxi
system with heat and mass transfer between its two s
systems, we find the canonical~Hamilton’s! structure of dy-
namics, and show a self-consistent way to derive this dyn
ics. The dependent variables,x5(n,e)2(n* ,e* ), are
deviations of mole numbers,n, and energy,e, from their
equilibrium values,n* and e* . In a forward DP algorithm
we minimize the entropy production or maximize the e
tropy functional

S5Sf2E
t0

t f

@ 1
2 Rg~x!:vgvg1 1

2 Rd~x!:vdvd1C~xg,xd!

1m•~vg1vd!#dt, ~61!

where the superscriptsg and d refer to two phases, the su
perscriptf to final states,C is the second~state-dependent!
dissipation function, andRg and Rd are x-dependent resis
tances. The balance constraints are handled by the Lagr
multiplier m8. The variablesx5(xg,xd) andv5(vg,vd) sat-
isfy the simple differential constraints

ẋg5vg; ẋd5vd. ~62!

Our goal is to show that the quadratic approximation of
thermodynamic entropy

S~x,n* ,e* !5S* ~ng* ,eg* ,nd* ,eg* !1p* •~xg1xd!

2 1
2 Gg:xgxg2 1

2 Gd:xdxd, ~63!

whereG is the Hessian matrix and the asterisk refers to
equilibrium, which is a suitable extremal function for th
linear dynamics~with x-independentRg andRd). Otherwise,
the approximation will be insufficient for nonlinear dynami
with state-dependent resistances. The HJB theory along
Belman’s equation~25! or the stage criterion~23! provide an
efficient way to treat such nonlinear systems.

Defining the potential of integral entropy productionSs
[min(Sf2S)5Sf2P, we arrive at the forward HJB equatio
~7! in the form

max
vg,vd,m8

H ]Ss

]t
1

]Ss

]xg vg1
]Ss

]xd vd2Rg~xg!:vgvg

2 1
2 Rd~xd!:vdvd2C~xg,xd!2m8•~vg1vd!J 50,

~64!

where vg and vd are the two dependent controls and t
Ss-free part represents the negative of the thermodyna
Lagrangian. The HJB formulation~64! is useful for an arbi-
trary dependence of resistance functions on the statex. Of
course,]Ss /]t5]C/]t50 for adiabatic thermodynamics
h
-

an
-

s

b-

-

-

ge

e

e

ith

ic

In terms of the current nonequilibrium entropyS as the op-
timal function, the Hamilton-Jacobi equation of the depe
dent variable theory is a truncation of the general stand
form

]S
]t

1HsS ]S
]xg ,

]S
]xd ,xg,xd,t D50, ~65!

with the functionsS andHs explicitly independent of the
time t. In linear adiabatic systems, withx-independent resis
tancesRg andRd, the Hamilton-Jacobi equation applies in
quadratic time-independent form

1
2 L:S ]S

]xg2
]S
]xdD S ]S

]xg2
]S
]xdD2 1

2 Wg:xgxg2 1
2 Wd:xdxd50,

~66!

where L[(Rg)211Rd)21 and Wg5Gg(Rg)21Gg. This is
satisfied by the entropy potential, Eq.~63!. In the phase
space, for linear systems

Hs~pg,pd,xg,xd![ 1
2 L:~pg2pd!~pg2pd!2 1

2 Wg:xgxg

2 1
2 Wd:xdxd50. ~67!

This equation yields the canonical set in the form of dep
dent Hamilton’s equations which are linear and satisfy
conservation laws identically.

In terms of the original state vectorñ5(n,e), and for
Gibbs equation defining the nonequilibrium entropy as
additive quantity over the homogeneous subsystems

dS[dSg1dSd5pg
•dñg1pd

•dñd, ~68!

the dynamics of phaseg has the canonical form

dñg

dt
5

]Hs

]pg ,
dpg

dt
52

]Hs

]ñg , ~69!

which, in the case of the linear dynamics, is governed by
extremum Hamiltonian of Eq.~67!. ~An analogous dynamics
holds for the phased.! The canonical equations describe r
laxation of mole numbers and energy and their thermo
namic adjointsp ~temperature reciprocals and Planck pote
tials! to equilibrium. For the linear relaxation of the phaseg
consistent with the quadratic entropy function, Eq.~63!,

dñg

dt
5Kg~ ñg* 2ñg!,

dpg

dt
5KTg

~p* 2pg!. ~70!

Thus the equations of motion for the state variablesñ and
their thermodynamic adjointsp complement the canonica
set ~70!. Our analysis shows that the linear relaxation of t
state variables is governed by the transfer matrixKg

5(Rg)21Gg and that of the thermodynamic adjoints by i
transpose,KTg5Gg(Rg)21. Only in the particular case whe
K is symmetric are relaxations of state variables and th
thermodynamic adjoints governed by the same common
trix K. The analysis shows the coherence and elegance o
variational approach.

In nonlinear systems withx-dependentRg andRd in Eq.
~61!, forward recurrence equations~25! or ~45! are applied to
solve the quasilinear HJB equation~64! or the related
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Hamilton-Jacobi equation~65!. In terms of the optimal cos
function Ss[2Vn, which represents the mimimum entrop
production, the recurrence equation is

Ss
n~xn!5 min

vn,un,mn

$ l 0
n~xn,un,m8n!un1Ss

n21~xn2vnun!%,

~71!

whereun5tn2tn21 and l 0
n[2 f 0

n is the thermodynamic La
grangian at stagen. At each stagen,

l 0~x,v,m8![ 1
2 Rg~x!:vgvg1 1

2 Rd~xg!:vdvd1C~xg,xd!

1m8•~vg1vd!. ~72!

Here the Lagrange multipliersm8 are extra coordinates of th
control vector. To reduce the problem’s dimensionality,
trivial conservation constraint is eliminated and the set
independent state variablesa5xg and controlsvg is used.
Note thatVn5V

*
n wheneverHn[0; thus the potential func

tions Ss
n andSs*

n generated by Eq.~71! or its asterisk coun-
terpart represent the same quantity which describes the m
mum production of the classical entropySs in the nonlinear
case. This quantity should be subtracted from the refere
final entropySf to get the actual entropy of the system@29#.

IX. HEAT RAYS ALONG PATHS OF LEAST
RESISTIVITY IN INHOMOGENEOUS MEDIA

When a thermal field in a rigid medium is imposed
fixing the thermal gradient, the flow of thermal energy can
described in terms of ‘‘thermal rays,’’ which are the paths
heat flow in the direction of temperature gradient. Their d
viation from straight lines results from variable thermal co
ductivity @30,31#. The thermal rays travel along paths sat
fying the principle of minimum of entropy production, whic
seems at first glance quite different from the well-know
Fermat principle of minimum time for optical rays. How
ever, the minimum of entropy production assures the m
mum resistivity of the path, which causes the maximum
heat flux through the medium and makes the residence
of heat in this medium as short as possible. This, in fact
very similar to the Fermat principle for propagation of ligh
Our purpose is to investigate this phenomenon by the me
of dynamic programming.

We use the reference frame~x,y! in which the local resis-
tivity of heat flow changes along the axisx, the axisy is
tangent to a surface of constant specific resistivityr, andu
5dy/dx is the local direction of the gradient of temperatu
reciprocalT21. The shape of thermal rays can be describ
as an optimal control problem for a minimum of the resist
ity integral,

~2S!5E
t1

t2
A0

21r~x!~11u2!dx, ~73!

subject to the controlu5dy/dx. A0 is the constant area o
projection of the heat flux tube cross-sectional area on
surface of constant resistivity. The minimal resistance fu
tion of the problem defined as
e
f

ni-

ce

e
f
-
-
-

i-
f
e

is

od

d
-

e
-

R~xi ,yi ,xf ,yf ![min E
t1

t2
A0

21r~x!~11u2!dx ~74!

satisfies the HJB equation

]R

]x
1max

u
H ]R

]y
u2A0

21r~x!~11u2!J 50. ~75!

Extremizing the Hamiltonian in the above HJB equati
yields as an optimal control

u5
A0

2r~x!

]R

]y
. ~76!

This optimality condition is written in the form of the tan
gent law of bending for a thermal ray,

r~x!
dy

dx
5 1

2 A0

]R

]y
[c, ~77!

wherec is a constant which may be both positive or neg
tive. The constancy of the partial derivative]R/]y follows
from an explicit independence of the model Lagrangian w
respect toy. A suitable integral formula for the bending con
stant in terms of the deviationy2y0 is

c5~y2y0!S E
x0

x

r21~x8!dx8D 21

. ~78!

Expressing the optimal controlu in the HJB equation~75! in
terms ofp5]R/dy yields the Hamilton-Jacobi equation o
the continuous problem

]R

]x
1A0

21r~x!F S A0

2r~x!

]R

]y D 2

21G50, ~79!

where the second term of the left-hand side expression is
optimal Hamiltonian. The solution to this equation can
ways be broken down to quadratures. However, if the fu
tion of specific resistivityr(x) is too complicated, the inte
grals cannot be evaluated analytically. Hence the role of
discrete approach which solves numerically Bellman’s rec
rence equation of the problem

Rn~yn,xn!5 min
un,un

$A0
21r~xn!@11~un!2#un

1Rn21~yn2unun,xn2un!%, ~80!

whereun5xn2xn21. This cannot be analytically solved fo
an arbitraryr(xn), thus the sequence of functionsRn must
be generated numerically. Yet, in the limit of an infini
number of stages, an analysis shows that the potential fu
tion satisfying Eq.~80! takes the limiting form

R~x,y!5E
x0

x

A0
21r~x8!dx8

1A0
21~y2y0!2S E

x0

x

r21~x8!dx8D 21

. ~81!

It may be verified that the above function satisfies both
HJB equation~75! and the Hamilton-Jacobi equation~79!.
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The numerical solution to Eq.~80! for a finite number of
stagesn represents the finite-stage generalization of the
lution ~81!; this numerical solution automatically accom
plishes the numerical integration required in Eq.~81!.

X. PROPAGATING DIFFUSION-REACTION FRONTS
IN ANNULAR MEMBRANES

Recent research shows that the propagation of the con
tration fronts as~bio!chemical waves also satisfies the pri
ciple of minimum time. The dynamic programming approa
leads to a HJB equation and its characteristic set for chem
waves. All these equations describe the link between
constrained wave fronts and associated ‘‘rays.’’ Usua
‘‘geodesic’’ constraints caused by an obstacle influence
state changes and the entering~leaving! conditions of a ray
as a tangentiality condition for rays that begin to slide o
the boundary of an obstacle. Thus an analysis can determ
complex shapes of rays in inhomogeneous media.

Self-propagating chemical fronts were discovered by
periments in reaction-diffusion systems occurring in flu
and porous solids. Autocatalytic chemical systems w
shown to be responsible for the wave propagation, and a
catalytic models were applied to provide expressions for
wave propagation speed@32#. Excitability properties were
recognized to be responsible for wave behavior. Spiral wa
especially drew considerable attention because of analo
phenomena in biology@33#. A number of dynamical proper
ties observed in experiments were substantiated in term
interactions of the elementary wave properties with
chemical system geometry. It was Winfree@34# who sug-
gested first that the shape of the spiral waves should b
involute of a small circle, the ‘‘core’’ of the spiral wave. A
involute of a given curveC is a curveC* which lies on the
tangent surface ofC ~the surface generated by the tange
lines toC! and intersects the tangent lines orthogonally. T
breakthrough was achieved when real open systems an
so-called continuously fed unstirred reactors~CFUR! ap-
peared, which made of possible to study chemical wa
under steady conditions. Noszticziuset al. @35# developed
the first CFUR with a ring geometry using acrylamide g
and created chemical pinwheels in that reactor.

A chemical pinwheel system consists of a circular strip
gel which separates two concentric CSTR’s. The wave m
tion can be understood as an interaction between diffus
and kinetics@36,37#. Chemical components diffuse into th
gel, react, and create a medium of excitable properties. C
centrations of species in the outer and inner reservoirs
ally differ, thus resulting in radial concentration gradien
and inhomogeneous properties of the excitable medium@38#.
The chemical species diffuse out of the front of the wa
towards the area of lower concentration, the concentratio
autocatalyst builds up, and after it crosses a threshold li
kinetics takes over. In effect, the concentration increa
strongly due to autocatalytic reactions, thus building
front of the wave. In inhomogeneous and~possibly! aniso-
tropic media, the description of the propagation of t
chemical wave is a very difficult task due to the obsta
constraints on the state coordinates. Our analysis of the w
motion @39# treats the chemical system as a constrained
timal control system which is analogous with a burning pr
-
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rie. Due to the~nonrelativistic! causality, the real path o
ignition is the one along which the fire first arrives at a poi
as for all subsequent instants the grass will already be bu
out at this point. This means that the system satisfies
Fermat principle of the least time@40#.

The simplest approach requires that the propagation sp
v is given as a known function of coordinates and directio
when this condition is satisfied, the simplest approach can
applied in its natural form, which deals with ordinary diffe
ential equations. For the lumped system, the speedv can be
obtained from a basic approach which deals with the und
lying autocatalytic model of reaction and diffusion describ
by partial differential equations of the type@37#

] tu5Lu1N~u!1D¹2u. ~82!

In Eq. ~82!, u is the set of fields,L andN are, respectively,
the linear and nonlinear reaction dynamics, andD is the
transport~diffusion! matrix. The analysis proceeds by a
suming that a constant wave profile emerges and propag
with a constant speed. Rectilinear, solitary wavefronts t
propagate with a constant speedv0 are one-dimensional so
lutions, u(x,t)5w(x2v0t), of the ordinary differential
equation

Lw1N~w!1Dw91v0w850, ~83!

obtained from Eq.~82! for u5w(x2v0t), where the prime
refers to differentiation with respect to the traveling wa
coordinater 5x2v0t, and the rest state corresponds tou
50. The solution to Eq.~83! represents a shape travelin
with a speedv0 ; diverse models yield a constant speedv0 or
a state-dependentv @37,41#. The physical propagation spee
v5dl/dt depends, in fact, on both the diffusion coefficie
of the autocatalytic species and the rate constants of a
catalytic reactions; it is a function of the rest state. To ap
the propagation speed in the framework of the minimu
time approach, state coordinates must be assigned to
point of the physical space where the wave motion occu

When a function describing the propagation speed
known, a HJB equation can be formulated. For a constrai
problem of minimum time in two-dimensional experiment
systems, a HJB equation is

max
um

H ]Tv~x,y,u!

]xA11u2
1

]Tv~x,y,u!u

]yA11u2
2@11mf~x,y!#J 50,

~84!

whereu5dy/dx andT is the function being sought, which
describes the shortest transition time. The constra
f(x,y)50 was built in, operative when the ray slides ov
the surface of an obstacle; the corresponding Lagrange m
tiplier is m. Note that the multipliers of the derivatives]T/]x
and]T/]y in Eq. ~84! represent the properly expressed ra
dx/dt and dy/dt that satisfy identically the constrain
(dx/dt)21(dy/dt)25v2(x,y,u). The numerical solution
can be found with the aid of Bellman’s equation for th
minimum timeSun,
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Tn~y,x!5 min
un,un,mn

H @11mnf~x,y!#un

1Tn21S y2
v~x,y,un!unun

A11~un!2
,x2

v~x,y,un!un

A11~un!2 D J .

~85!

The solution describes straight rays in the simplest poss
case of a homogeneous medium. In a complex chemical
dium, the quantityT which describes the shortest transitio
time is a constrained generalization of the simplest transi
function of a homogeneous and isotropic medium in wh
the wave motion is with the constant speedv,
of

l

of

-

w

.

a

s

A
-

g

le
e-

n
h

T~x,y,x0,y0!5v21A~x2x0!21~y2y0!2. ~86!

Equation~85! allows for numerical generation of the func
tion T(x,y) for the case of constrained wave motions in co
fined regions and in complex media. Experiments confirm
the behavior of chemical fronts predicted by the theory
available@33#.

ACKNOWLEDGMENT

The author acknowledges support in the framework
Grant No. T09C 063 from the Polish Committee of Nation
Research.
E.
es

m-

,

orld
997

.

@1# R. E. Bellman,Dynamic Programming~Princeton University
Press, Princeton, NJ 1957!.

@2# R. Aris, Discrete Dynamic Programming~Blaisdell, New
York, 1964!.

@3# W. Findeisen, J. Szymanowski, and A. Wierzbicki,Theory and
Computational Methods of Optimization~Panstwowe Wy-
dawnictwa Naukowe, Warsaw, 1980!.

@4# L. T. Fan, The Continuous Maximum Principle, A Study
Complex System Optimization~Wiley, New York, 1966!.

@5# S. Sieniutycz,Optimization in Process Engineering, 2nd ed.
~Wydawnictwa Naukowo Techniczne, Warsaw, 1991!.

@6# V. G. Boltyanski,Mathematical Methods of Optimal Contro
~Nauka, Moscow, 1969!.

@7# H. Rund, The Hamilton-Jacobi Theory in the Calculus
Variations ~Van Nostrand, London, 1966!.

@8# L. D. Landau and E. M. Lifshitz,Course of Theoretical Phys
ics: Vol. 1, Mechanics~Addison-Wesley, Reading, MA, 1960!.

@9# R. E. Bellman and S. E. Dreyfus,Applied Dynamic Program-
ming ~Panstwowe Wydawnictwa Ekonomiczne, Warsa
1967!.

@10# S. Sieniutycz, Rep. Inst. Chem. Eng. Warsaw Tech. Univ2,
399 ~1973!.

@11# Z. Szwast, Ph.D. thesis, Institute of Chemical Engineering
the Warsaw University of Technology, Warsaw, 1979~unpub-
lished!.

@12# S. Sieniutycz and Z. Szwast, Int. J. Chem. Eng.23, 155~1983!.
@13# L. T. Fan and C. S. Wang,The Discrete Maximum Principle, A

Study of Multistage System Optimization~Wiley, New York,
1964!.

@14# V. G. Boltyanski, Optimal Control of Discrete System
~Nauka, Moscow, 1973!.

@15# Z. Szwast, Inz. Chem. Proc.3, 529 ~1988!.
@16# R. S. Berry, V. A. Kazakov, S. Sieniutycz, Z. Szwast, and

M. Tsirlin, Thermodynamic Optimization of Finite Time Pro
cesses~Wiley, Chichester, 1999!.

@17# R. Gutowski,Analytical Mechanics~Wydawnictwa Naukowo
Techniczne, Warsaw, 1978!.

@18# S. Sieniutycz,A General Theory of Optimal Discrete Dryin
Processes with a Constant Hamiltonian, in Drying 84, edited
by A. Mujumdar~Hemisphere, New York, 1984!.
,

t

.

@19# S. Sieniutycz, Inz. Chem.5, No 3, 651~1975!.
@20# G. Leitman,An Introduction to Optimal Control~McGraw-

Hill, New York, 1966!.
@21# L. S. Pontryagin, V. A. Boltyanski, R. V. Gamkrelidze, and

F. Mischenko,The Mathematical Theory of Optimal Process
~Interscience, New York, 1982!.

@22# I. I. Novikov, Nucl. Energy II7, 125~1958! @At. Energ.3, 409
~1957!#.

@23# F. L. Curzon and B. Ahlborn, Am. J. Phys.43, 22 ~1975!.
@24# S. Sieniutycz, Phys. Rev. E56, 5051~1997!.
@25# S. Sieniutycz, J. Non-Equilib. Thermodyn.24, 40 ~1999!.
@26# S. Sieniutycz,Advance in Recent Finite Time Thermodyna

ics, edited by Ch. Wu~Nova Science, New York, 1999!,
Chap. 7.

@27# S. Sieniutycz and Z. Szwast,Practice in Optimization: Process
Problems ~Wydawnictwa Naukowo Techniczne, Warsaw
1982!, pp. 219–225.

@28# Z. Szwast and S. Sieniutycz,Energy Approach to Optimization
of Some Processes of Heat and Mass Transfer, Florence W
Energy Research Symposium, FLOWERS’97, Florence, 1,
edited by G. Manfrida~SG Editoriali, Padova, 1997!, pp. 985–
994.

@29# S. Sieniutycz and A. N. Beris, Int. J. Heat Mass Transf.42,
2695 ~1999!.

@30# A. Tan and L. R. Holland, Am. J. Phys.58, 988 ~1990!.
@31# S. Sieniutycz, Int. J. Heat Mass Transf.~to be published!.
@32# P. Gray and S. K. Scott,Chemical Oscillations and Instabili-

ties ~Oxford University Press, Oxford, 1990!.
@33# A. Lazar, Z. Noszticzius, and H. Farkas, Chaos5, 443 ~1995!.
@34# A. T. Winfree, Science175, 634 ~1972!.
@35# Z. Noszticzius, W. Horsthemke, W. D. McCormick, H. L

Swinney, and W. Y. Tam, Nature~London! 329, 619 ~1987!.
@36# J. P. Keener, SIAM~Soc. Ind. Appl. Math.! J. Appl. Math.46,

1039 ~1986!.
@37# E. Meron, Physica D49, 98 ~1991!.
@38# D. A. Vasquez and W. Horsthemke, J. Chem. Phys.80, 3829

~1991!.
@39# S. Sieniutycz and H. Farkas, Chem. Eng. Sci.52, 2927~1997!.
@40# P. L. Simon and H. Farkas, J. Math. Chem.19, 301 ~1996!.
@41# D. Horvath, V. Petrov, and S. K. Scott, J. Chem. Phys.98,

6332 ~1993!.


