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Bellman’s method of dynamic programming is used to synthesize diverse optimization approaches to active
(work producing and inactive(entropy generatingmultiphase flow systems. Thermal machines, optimally
controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating
wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete
optimization algorithm of Pontryagin’s type, with the maximum principle for a Hamiltonian. The extremal
structures are always canonical. A common unifying criterion is set for all considered systems, which is the
criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a
different way for each group of the processes considered; thus the resulting structures of these functionals may
differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in
optimally controlled system$S1063-651X99)14508-2

PACS numbdps): 05.70.Ln, 47.27.Te, 44.30v

I. INTRODUCTION: DYNAMIC PROGRAMMING FOR cesses, the principal goal is to determine bounds for work
THERMODYNAMIC OPTIMIZATION produced by an engine system or consumed by a heat-pump
system in high-rate regimes. For a class of optimally con-
In this paper we present a synthesis of dynamic optimizatrolled unit operations, the principal goal is to find optimal
tion approaches to acti@vork producing and inactivelme-  controls and optimal trajectories which minimize energy
chanical energy degradingnultiphase flow systems. The costs, whereas the optimal data of these costs may be of
mathematical framework is essentially Bellman’s method ofsecondary importance. For a class of spontaneously relaxing
dynamic programming and associated maximum principlesnonequilibrium processes, whose dynamics are known, the
Endoreversible multistage processes which yield maximunprincipal goal is to form the entropy production functional
mechanical work, optimally controlled unit operations thatwhich assures that dynamics. For inhomogeneous heat-
minimize energy costs, spontaneous relaxation processes toenducting solids, the principal goal is to assess nonlinear
wards equilibrium, thermal rays, and self-propagatingeffects caused by spatially distributed thermal resistances.
reaction-diffusion fronts are all shown to satisfy a discreteFor the self-propagating reaction-diffusion fronts with kinet-
algorithm of Pontryagin’s type, with the maximum principle ics governed by the mass action law and diffusion-reaction
for a Hamiltonian with respect to controls. The minimum couplings, the principal goal is to transform an exact field
entropy generation is a common unifying criterion; the ex-model into an optimal lumped model which satisfies the sec-
tremal structure is always canonical. Both multistage andnd law in terms of relationships for wave fronts and rays, as
continuous processes are considered; all discrete characteri admissible approximation.
tics reach their continuous counterparts in the limit of an It is worth noting that the analytical expressions which
infinite number of stages. The dynamic programming ap-describe the formal Lagrangians in terms of the state and
proach (DP) leads to a discrete Hamilton-Jacobi-Bellman control variables are different for each class investigated, and
equation, a discrete canonical set, and extends to discreg® are resulting equations of optimal dynamics. This proves
finite-stage processes Pontryagin’s classical method in whicthat, while the entropy production can be accepted as a gov-
a HamiltonianH is maximized with respect to controls. Op- erning quantity, in each of the considered cases constraints
timal performance functiongvhich describe extremal work, modify resulting functionals in a different way, or, formally
minimal entropy generation, minimum resistance, Jetce  speaking, the entropy generation minimization always works
found in terms of end states, process duration, and number @fith different subsets in the state space. Practical aspects of
stages. Alternatively, the Legendre transforms of the originathe theory are illustrated by optimization of multistage ther-
functions with respect to the time can be generated; in thisnal machines and heat and mass heat exchangers, especially
case the optimal functions are found in terms of end stategor processes of fluidized bed evaporation from porous sol-
Hamiltonian, and number of stages. We also predict that ouids. Applications also involve a finite-size extension of the
theory could be of use for quantum phenomena and for thelassical problem of minimal work to discrete processes.
multistage cooling processes necessary to reach conditions in To derive necessary optimality conditions for both con-
which quantum effects become observable in cold systemstinuous and discrete processes, Bellman’s method of dy-
Despite a common mathematical framework, optimizationnamic programmingDP) is applied[1,2]. An original dis-
goals are quite different for the variety of the processes corerete approach to sequential systems allows us to pass from
sidered. For a class of energy-converting endoreversible pra@P results to the discrete maximum principle, which is an-
other powerful computational tool. To accomplish the multi-
stage optimization, it is essential to define a class of discrete
*Electronic address: sieniutycz@ichip.pw.edu.pl optimal control processes linear with respect to the residence
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time interval. With the discrete version of Bellman's dy- and final time andin a discrete procegshe corresponding
namic programming, necessary conditions of optimality arissnumber of stages.

in a form which contains an equation of Hamilton-Jacobi The dual formulation refers to the so-called forward algo-
type with a delayed time argument. To overcome difficultiestithm of the DP method, which we apply here to multistage
associated with solving equations of this sort, the necessafjfocesses. In this algorithm, recursive optimizations that
conditions are transformed to a form governed by a discretgolve the functional equation begin at the initial state and
Hamiltonian. It is then shown that, in multistage autonomoud@rminate at its final state. The state transformations have the

systems, a Pontryagin-like Hamiltonian emerges, which idorm which describes state inputs in terms of state outputs

constant along an optimal discrete trajectory. From a physi@d controls at a stage. While this is not the most typical

cal standpoint, this constant Hamiltonian condition is a gen_representation of the state transformations, it is directly ob-
eralization of the energy conservation condition to optimal
discrete systems with free intervals of time. On this basis,
discrete canonical formalism, strongly analogous to those i
analytical mechanics and the theory of optimal continuou
systems, is introduced and applied for the multistage optim

tainable for multistage processes with an ideal mixing at the
tage. On the other hand, inverse transformat{assd in the
ackward algorithmhmay be difficult to apply in an explicit
orm. With the forward DP algorithm, local optimizations
iproceed in the direction of real time.

zation.
Bellman’s principle of optimality is crucial for both the ll. HAMILTON-JACOBI-BELLMAN EQUATIONS
existence of the optimal performance functions and the deri- FOR CONTINUOUS SYSTEMS

vation of the pertinent dynamic programming equation,
which describe these functionals. When the optimal perfor-
mance function is generated in terms of the initial states an@
initial time, the principle of optimality may be stated as fol-
lows: In a continuous or discrete process, which is described i
by an additive performance criterion, the optimal strategy S=f folx,t,u)dt+G(x'(t),th— G (th,th, (1)
and the optimal profit function are functions of the initial ¢
state, initial time, andin a discrete procegshe total number heref, is the profit intensity an@(x.t) is a gauging func-
of stages. Therefore, each final segment of an optimal patf 0 P Y x,1) 1S a gauging u

. . ! . . L ion that depends on the stateand the time. For Eq.(1), a
(continuous or discrejeis optimal for its own initial state

and initial ime and(in a discrete proceshe correspondin maximum of the criterior§ is sought with respect to a suit-
pro resp 9 able choice of the vector functiongt) andu(t). The func-
number of stages. The proof of this formulation is by con-

tradiction; it uses the additivity property of the performancetIon G_lnfluences an optimal solution qnly if some of the gnd
criterion coordinates of the state vector or time are undetermined.

1 i it i i initial ti i
The formulation of the principle of optimality, stated Working with all initial coordinates<' and initial timet' as

above, refers to the so-called backward algorithm of the DIi,ndependent variables, we can generate a function describing

method. In this algorithm, the recursive optimization proce-the maximum value o8in terms ofx' andt'. This is called

dure that solves Bellman’s functional equation begins at théhe qugmal optimization problem. However, one can also

final process state and terminates at its initial state. The proc_on5|d(_ar the maximum (ﬁas_ a fu'r;c;gon gt?nera}te_d In terms

cess to which this is applied may be arbitrary: it may beOf the final co'or'dmgtes and final . "’?”d.t - This is called

discrete by nature or may be obtained by discretizing aljihe dugl optlmlzatlo_n _problem. It is |_n5|ghtful to confront

original continuous process. The state transformations p0£ropert|es of the original prob!em with those Qf the dual

sess, in this algorithm, their most natural form, as they deproblem. For this '?”[F’QS? we introduce the optimal perfor-

scribe output states in terms of input states and controls at'yance function/(x,t',x",t'),

stage. The optimization at a stage and the optimal function

do recursively involve the information generated in earlier

subprocesses. It is well knowi8] that, in the continuous tf o

case, this method leads to a basic equation of optimal con- =max[ fi fo(x,t,u)dt+G(x",th —G(X,t') }.

tinuous processes, which is the so-called Hamilton-Jacobi- !

Bellman equation. However, a similar equation can be de- (2)

rived only for special discrete processes, those which are

linear in the free time intervalg". The optimality principle ~ The functionV describes the maximum &in terms of the

makes it possible to replace a simultaneous evaluation of a@nd states and end times, and it is common for both the

optimal controls by a sequence of local evaluations of optiOriginal and the dual problem.

mal controls at stages, for evolving subprocesses. The optimization in Eq(1) is subject to constraints result-
On the other hand, the optimal profit function can be gening from a set of differential equations,

erated in terms of the final states and final time. The opti-

mality principle has then a dual form: In a continuous or %=f-(xt u) 3)

discrete process, which is described by an additive perfor- dt "o

mance criterion, the optimal strategy and the optimal profit

function are functions of the final state, final time, dimda  where x=(Xy,X5,...X;,...,Xs) IS the s-dimensional state

discrete procegghe total number of stages. Thus each initial vector andf=(f4,f,,....f;,....fs) is the vector of rates. The

segment of the optimal path is optimal for its own final stater-dimensional vectou= (u,,u,,...,u;) is the control vector.

In many physical phenomena and processes in practical
ystems, a general problem of optimal control can be asso-
iated with the Bolza form of the performance index,

V(X t 't =maxS
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The admissible control usually satisfies certain local con- 5 S 4G
straints, the most typical being fo(x,t,u)zfo(x,t,u)+&G/&t+2 Wfi(x,t,u) 9
=1 i
ut)eu, (4)

appears in a HIB equation describivig

whereU is an admissible set in the control space. There may Tht(_a HJIihiﬂuatlotn IS a qugsm?heatr partial (tjrl]fferintlal
also be some additional constraints which link coordinates of 44a4on Wi € extremizing sign that governs the charac-

the state vector, and the control vector. They are usually  "1StiC functioniP (er\: via the ;:orr:trou, fW hich achieves t_hle
of the typeg(x.u.t)=0 or g(x.u.t)<0. However, they may OPlimization. The definition of the performance potentia

be included into the model by using Lagrange multipliers, ain Eq. (2) is the most suitable to processes producing a profit,

special sort of control variable which resides linearly in the'” which case/ is positive. For processes dgscnbed In terms
model. These multipliers will increase the dimensionality ofOf C.OSt_’ the most sungble def|n!t|on assuring a posmv_e po-
u without changing the general structure of the model, giverjfentlal involves an optlmal functloﬁ_, which is the negative
above. Thus the modél)—(4) is sufficient for general con- of V. Indeeq, for an arbitrary function& and the same end
siderations. To include the time coordinate into the state vecStates and times,

tor, we can use the enlarged+ 1)-dimensional vector of R

state X=(X1,Xp,...Xj ,... Xs,Xs+1) iN Which casexg ;=t R=min( =S s) =~ max§z 5=~ V. (10

and  (+1)-dimensional  vector  of rates f  \yhere tildes refer to the enlarged vector of state that includes
=(f1.f2,.. . fi, o fs fsrn) with fo =1, the timet. Thus, the single external functiaf(t',x ,t*,x") is

The use of Bellman’s optimality principle for continuous syfficient to describe the extremum of the functioalin
systems is known from many sourdds3—6. MaximizingS  analytical mechanics such equations are usually derived by
along a trajectory that starts at' ('), the principle yields the  the method of variational calcul§g]. The DP approach al-
so-called Hamilton-Jacobi-Bellman equatidB equatioh  |ows for more general derivations, which take into account

. local constraints imposed on control variables, Ej. Our
i P . dP treatment here develops a search for properties and implica-
m& fo+,§ =0 (3 tions of HIB equations in physics, chemistry, and thermody-

' namics of multiphase systems. For discrete problems, the
dynamic programming will effectively be applied in the next
section.

The partial derivative of the characteristic functidrwith
respect to time can be taken out of the bracket of a HIB
equation, and the indicdsor i are conveniently omitted in
equations of this sort for various end states. Changing the
signs of extremized expressions, whenever the change of the
extremum operation takes place, yields in terms of final
states and times

u

where
P(x,t' x"th=G(x'th—G(x",th+Vv(x t'x t). (6)

(Of course,P=V whenG=0.) Expressing a HJB equation
in terms ofP rather tharV is convenient, becaus&summa-
rizes all gauging effects.

Now, we consider an optimal trajectory which terminates
at (x',t"). The optimality principle yields the HIB equation

in the form Vv oV _
) E+rrlln[5-f(x,t,u)—fo(x,t,u)]
S anf_aP 0 @)
Mo Y

_dR R . 7 -0 (1
=E+mfx5- (x.t,u)+fo(x,t,u)=0.  (11)

We can interpret the meaning of extremum operations in
HJIB equations as a maximization of the profit intensity|n terms of initial states and times we find similar relation-

gauged by the total derivative of the optimal performanceships. Note that function® represent extremum actions of
function P. A mnemonic rule is helpful which states that the ., <<ical mechanics, whefg(x,t,u)=—To(xt,u) is a La-

total differentiation ofP is allowed at the end of the process grangian8]
where the complete state can be fixeennot be optimized In all HIB equations, the extremized expressions are
and that this differentiation yields the related HIB equaﬂonHamiltonians In fact the;/ are “nonextremal” Hamiltonians
It Is allso worth nptmg that the Qpnmal funphd#i, Ba. o Pontryagin’s type. The optimal contro) which solves the
(2), that IS related directly to _the original C”te”@ can be optimal work problem, is chosen in order to extremize the
ussed7to yield the HJB equation. Indeed, we find from Eqs o mitonian at each point of the extremal path, which means
-7 extremizing a wave-front velocity in the HIB equation. The
n n power of approaches based on the HIB equation is caused by
ma hff_z &fo_ v —max 7 +z ﬂfi+ 0_\/_ the fact that theoptimal performance functions satisfy this
10 Aot af it R T equation with the same state variables as those found in the
related unconstrained problem. Only dimensionalities and
=0, (8) numerical values of optimizing control sets and the numeri-
cal values of the functionB or V may differ in constrained
where in either case a gauged profit intensity and unconstrained cases. Methods which serve to obtain so-

u u
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lutions of a HIB equation can be both analytical and numerian extremal process. Yet, for the samehe numerical val-
cal. For some special models, e.g., for thermal machines witbes ofH may be different when the process evolves from the
heat transfer, solutions can be obtained analytically. A stanstatex' to the statex’ and then goes back, frow to X!, in
dard numerical procedure, which works with Bellman’s re-the same amount of time. With the optintal and usingp
currence equation, is the most usual tool to solve a HIB=—4V/dx in Egs.(13) and (15), we obtain the Hamilton-
equation in the case of low dimensionality of the state vectodacobi equation for the characteristic functidn
[1,9].

Vv

e
[lI. TRANSITION TO HAMILTON-JACOBI EQUATIONS ot

IN CONTINUOUS SYSTEMS

t id =0 16
X! ’ [?X — V. ( )

This form refers to variations of final states and times. We
We now consider a transition to a Hamilton-Jacobi equacan express Eq16) also in terms of the derivativesR/dx,
tion for Eq. (11). For a definite physical problem, a single replacing— dVv/ax. Equation(16) differs from its HIB equa-
common formula can summarize the effect of varying thetion insofar as it refers only to extremal paths aHds the

final states and final time and that of initial states and initialextremalHamiltonian. This equation should be solved sub-
time. To derive the formula, we first need to define an adjoinject to the boundary condition

vector, p, as the negative partial derivative JV/9x when o

the variedx is the final state”. It may be realized that these lim V(x',t'x,t)=0. (17)
adjoints, resembling mechanical momenta, do not coincide X=X

with other possible adjoints, based on gradients of the func- . . . .
tion P whi?:h can aIsJo be used. An i?nportant fact is theAssouated with the canonical set, the free boundary condi-
equality 3V/ox' = — V/dx' arising whenever two end states t::)n ffor H anclp f(illow.?/ ;‘roriléhe %eletlonvclnf\/irgnali('S in

x andx' tend to coincide. This proves that both derivativest'® M —H=p=—0dV/dt=0 andp=-JV/x=0. How-
aVIaxi and — aV/ax' (or 9Paxi and— aP/ax") represent, in ever, in terms of the potenti#, Eq. (6), the free boundary

fact, the same physical quantity. Thus, it is enough if we tes{:onditions are diffe.re.r}t; th? conditioaV/dt=0 implies
Eq. (1) Whichpdeyals Wi?h finalystates and times.g dPldt=9G/ gt at the initial point and/P/dt= — G/t at the

For the process Lagrangians, i.e., the integrandgnal point. Thus, we finddP/dt=—dG/ot and JP/ox=

~ _ = L —dG/ox for variations that refer to the final points.
Io(x,t,u)=—f0(x,t,u), t_he extremum cond|t|(.3ns.|n~Eq(§) When the vector of initial values(t')=x'is given, the
and (7)~determ|ne the link between the derivativél,/Ju functionV(x',t',x,t) is determined as the solution to H46)

(or —dlg/ou) and the state adjoints=—dJV/dx. The for-  in terms of the final states. The optimal trajectory, or the

mulas that follow refer to the final-state variations in Eq.vector x(t), is then found from the initial relationship'

(11). Its extremizing with respect to the controlin factu’)  =4V/ax, which yieldsx=x(t,t',x,p'). Otherwise, the ad-
leads to two equations. The first express the optimal contrgbint vector follows for current states in the formp=
u throughx, t, and —aV/dx; for an unconstrained vectar,  —V/dx; this yields p=p(t',x',t,x). Substituting into the

latter expression the trajectore=x(t,t',x',p'), we find the
evolution of p in time; p=p(t,t',x',p'). Thus, we obtain
both the optimal trajectory and the adjoint vector as func-
tions of the current timeé and the initial valuest(,x',p').

NV dfe(xt,u)

X Ju 12

and the second is the original equatidrl) without the ex-

tremizing sign; in terms oV, IV. DISCRETE THEORY OF PONTRYAGIN'S TYPE

oV WITH OPTIMAL INTERVALS OF TIME

i T ox ftu)=fo(x,t,u)=0. (13 Now we shall outline an analogous theory for multistage
processes: a discrete optimization theory based on the so-
With the momentum-type variable= — dV/dx=9dR/dx and  called discrete maximum principle with a constant Hamil-

Eq. (12) written in the form tonian [5,10—12. The previous continuous theory will ap-
pear as the limit of the discrete theory for an infinite number
afo(x,t,u)  alg(x,t,u) of stages. Still, our approach will made it possible to treat
= au = au ) (14 multistage processes with a small number of finite stages.

These latter processes are discrete by nature; they occur in

we can solve Eq(14) in terms ofu to obtain the function Many engineering systems, e.g., cascades of extractors,
u(p,t,x). When we substitute this function into E@.3), an ~ €vaporators, fluidized dryers, multistage thermal machines,

energylike Hamiltonian of the extremal process emerges: €tc. A continuous-discrete analogy is derivable for discrete
models which are linear with respect to a particular uncon-

HX,t,p)=p-f(X,t,p) +To(X,t,p)=p- F(X,t,p) =T o(X,t,p). strained control variable. This control may be an uncon-
(15)  strained interval of one of the state variables, especially the
interval of time, 8", or an interval of a length. The model’s
This structure is also valid for the extremal functithif the  linearity with respect t@" is crucial for the formal similarity
controlu is constrained, i.e., when the link betweg@andu of the necessary optimality conditions in discrete and con-
is no longer given by Eq.14). Along with the HIB equation tinuous processes because, broadly speaking, this linearity
(112), the definition assures thethas a positive maximum in eliminates the second order and higher terms in Taylor ex-
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pansions of characteristic functions for discrete processe#n alternative definition oV states this function in the form

The standard discrete theory of optimal confrt8,14] does

not predict a special similarity between discrete and continu- N 00 e " kK

ous cases. This is why such characteristic features of th¥ (X,t°,x",t")=ma kzl [fo(X5,t5,u%) 6

continuous theory as constancy of an autonomous Hamil- -

tonian or a Hamilton-Jacobi equation remainded unknown in

discrete systems for a long time. However, when a discrete +G(xXK th) —G(xk 1tk l)]]

model has a structure linear iff', a remarkable discrete-

continuous analogy emerges. In particular, discrete optimal n

functions satisfy Hamilton’s and Hamilton-Jacobi formal- =max{ 2

isms and a discrete maximum principle emerges in a form =

analogous to that known for continuous systems. An analyti- ~ e

cal theory of discrete optimization is given below. N G(X)— G(X—F4(%,u") gk)} ok
To develop an analogy with E@l), we consider the dis- 6%

crete Bolza functional,

N = max{ 21 Tgak] , (22

SN=2" f3(x"t"uM 0"+ G(xN,tN) - G(x%,t%).  (18)
n=1

£5(X<,uk)

whereT§ is the gauged profit intensity, a discrete analog of
The optimization in Eq(18) is subject to constraints result- that in Eq.(9).
ing from difference equations, To solve the optimization problem, a generalization of

Bellman’s recurrence equation to the form of the so-called

x?_xinflzfi(xn,tn,un)gn, t"—t" 1= (19 stage criterior]5] is essential,

where X=(Xy,Xp,... Xi,...XJ) is the sdimensional state ~ max {fg(x",t",u"¢"—[P"(x"t")
vector andf=(f;,f,,....f;...,f) is the vector of rates. The u"¢"x"t"
r-dimensional control vectoru=(u;,us,,...,u;) is con- — P (X" —£(x™, " uM) 6", t"— M) ]} =0, (23
strained, i.e.,

where, by definition,

u"eU, (20
P (x%,t% x" tM =G (x,t% — G(x",t") + V"(x°,t% x" t").
whereU is the admissible set in the control space. Generali- (24)
zations are possible to include local constraints on the state o )
and controls in the way described for the continuous case. With Ed. (23), a complete set of necessary optimality condi-
The optimization problem can be stated as that of maxilions is determined, including those with respe(_:t to stdte

mizing S for n=N when the initial point ,t°) is fixed. and timet" (se_e Ref.[6].for an analogous_contmuqus ap-
However, a difficulty arises if we want to obtain a difference Proach. Equation (23) yields all relevant information: it
analog of Eq.(9); in fact, it is not clear whether such an leads to HJB equations, def|n|_t|on of, state adjoints, 'an.d
analog exists, because the differential calculus cannot be aganonical set. Bellman’s equation follows from the criterion
plied to finite differences in the discrete case. It is preciselyf23) for the fixed final state and time,
for this reason that we prefer to use the potential funcBon
rather tharlv when discrete processes are analyzed. It is also
essential to recognize the importance of the necessary opti-
mality condition for free intervals of tim&]", which yields a — P (x"—f(x",t",uM) 9", t"— ")}, (25)
vanishing “enlarged Hamiltonian,” and the significance of
generalization of Bellman’s recurrence equation into the soEquation(25) is in the “forward” form; its backward coun-
called stage criterion. The latter includes variations of enderpart represents the most popular form of recurrence equa-
states and times, thus yielding simultaneously the discretdons for multistage optimization. Starting witi°=0, the
characteristics and the conditions for an optimal control. Wesequenca/?,... VN is found by a well-known iterative pro-
concentrate here on the dual problem in which a maximuntedureg 2,9], in which extremizing is with respect to controls
of Sis sought at a fixed final pointx{',t"), subject to the at the constant coordinateg"(t"). Analytical solutions are

P (x",t") = max{ fg(x",t",u") 6"

un o"

constraints set by Eq$19) and(20). rare. For example, an analytical solution to EB5) exists
We define the optimal performance function of the dis-for a cascade of thermal engines; see Sec. VI.
crete problem, Let us first fix statex" and timet" in Eqg. (23), or, equiva-
lently, deal with Eq.(25). For an unconstrained" and con-
VN0, 10, xN tN) strainedu” e U, these equations yield the following set of

N necessary conditions of optimality:
— n/yn +n , Ny pgn N +Ny _ 0 ;0
_max{ ngl fO(X AN UM "+ G(XNL T = G(xL, ) 1. fg(xn,tn,un)an_[Pn(xn,tn)

(21) —PM ("= ("t u™) 67, ") ]=0, (26)
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n-1 n-1 (i=1,...5s5+1). HereK"=—P" is the costlike optimal

o T PO U = =7 =0, (270 function. In terms of the state and adjoint variables, the
Hamiltonian(30) is

fo(x",t"u") —

and
s+1
ARG P AOOON] oo AN 1 an 2 L2 = 3 20 =2k
aun axn 1 au” e =0
S
The weak maximum conditi_o_n with respect, WhiCh _fol_- +2 Zinflfin_'_zpfl, (34)
lows as the necessary condition for the negative variation of i=1

S is sufficient in applications in most practical cases.

Equation(27) is the stationarity condition for the optimal where z) =1, z! '=—gP" Yox! t=oK""Y/ox" 1,
intervals §". Wheneverd" is finite and positive, then it fol-  zn-1—z0"1= _ ypn-1/5tn=1= 5K"~1/gt"~ 1, and f, =1
lows from Eqs.(26_)—(28) that _Eq.(28) can be derived from forj=12 ... s andn=1,2, ... N. This Hamiltonian has
the following maximum condition: to attain a maximum with respect to the contralswhich
n-1 pn-1 maximize a performance index of the profit type, such as the
AN, u") — 0. production criteriorS"Y, whose optimal functioP” satisfies

Eqg. (24). In an equivalent formulation, we minimize a per-
(29)  formance index of the cost type, such as the consumption
L ) ) . criterion (—SM), whose optimal functiorK"=—P". The
This is a discrete HJB equation which represents a weakjamiltonian(34) is a basis for the method using canonical
maximum principle with respect to" for the “enlarged equations, which emerges from the stage criteli@® as

J
ma><[ fo(x",t",u") —

i [7’Xn_1 [7'tn_1 =

Hamiltonian” shown below.
n—1 pn-1 Let us now fix controlau" and #" in Eq. (23) and differ-
ﬁnflzfg(xn,tn,un)_ T A0t u) — T entiate the expression in curly brackets of this equation to
X

determine its stationarity conditions with respect to the final
(30 state and time. We obtain an optimal difference set which is

whereP" is defined by Eq(24). Equation(29) states that the canonical with respect to two sorts of equations, one defining
necessary condition for the maximum 8 with respect to the change; of state and th? other the corresponding cha_nges
the control sequencgu™} is that for the enlarged Hamil- of the adjoint variables. Using the most popular energylike

tonian (30). As f.,,(=1) is u-independent, the optimality Hamiltonian, Eq(31), expressed in terms of the adjoint vari-

condition (29) can also be expressed in terms of an energyf"bles'

like Hamiltonian that has excluded the partial derivative of

P"~1 with respect ta" 1, .

HP 4™, 20 L um i) = (x",um t) + D, 20 MR, un ),
n-1 i=1

s
Hn—l Xn’tn’_ - ’un =f1_
axn 1 0 izl

n—-1
. (3D @9

J
oxP

the algorithm of the discrete maximum principle is repre-
Equation(31) rejects theu-independent term#P"~*/dt"~'  sented by the equations

from the Hamiltonian(30).

When the optimal control” is evaluated from Eq(298) x—x"~1  pyn-1
and substituted into Eq27), the latter becomes a discrete =, (36)
Hamilton-Jacobi equation, 4 9z,
(')'Pn_l apn—l apn—l n__n-1 n-1
_ n—1[ yn non o _ Zi — Z; oH
ﬁtn*l +H Xl 1eee 1XS vt ’ angl axl’g\*l 0’ 0” = axn ’ (37)
(32 '
which is nonlinear in terms of the derivative®"~1/gx" 1. Z -zt gH" 1
It is written for theextremum H~* of the Hamiltonian func- o gt (38)

tion of energy type, Eq(31), rather than in terms of the

enlarged Hamiltoniaki" . In the limiting case of an infini- and

tesimal sequence of", this equation yields the Hamilton-

Jacobi equation of corresponding continuous process, consis-

tent with Eq. (16). Note that for the gauging functio

=0, the limiting form of Eq.(32) coincides with Eq(16).
The state adjoints are now defined as

2 T+ maxH" {(x", 2" UM t") =0 (39

un

(n=1,...N; i=1,...sandl=1,...r). As shown by
GPPLxL) KM L(x0 L Eq. (28), the weak or local maximum conditions in E¢29)
— = — (33 and(39) can be proven easily, otherwise the strong or global
IX; IX; maximum condition requires a subtle proof of validity of Eq.

n-1_
Zl =
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(29) in the whole admissible region af, Eq. (20); for this  Likewise, if the boundary timeN or t°, is fixed, the respec-

issue, see Ref.15, 16. Nonetheless, it is the weak maxi- tive Hamiltonian, %N or H°, is undetermined. WheN tends

mum principle which is sufficient in most applications. to infinity, the discrete algorithm becomes that of Pontrya-
Equation (36) constitutes the Hamiltonian form of the gin.

state equations, and E@7) is its adjoint equation. Equation

(38) describes the Hamilto_nian interval at the stage V. OUTLINE OF THE COMPUTATIONAL APPROACH
whereas Eq(39) states that in an extremal process the en-

larged HamiltoniarH"~*=H""'+2z""! is always constant Now we shall describe the basic principles of solving
and equals zero. Equati¢B9) includes the necessary condi- Methods. The primary idea is to solve certain underlying
tion for the stationary optimality of the decision vectétif ~ equationgsuch as Bellman's equatidi2S), the stage crite-

its optimal value falls in the interior of the allowable range 0N equation(23), or the maximum principle equations
U. Quite importantly, Eq(38), which describes the change (39-(39)], rather than the related HJB equati¢29) or

of the Hamiltonian through a finite stage, does not folias ~ Hamilton Jacobi equatiof82). This is because the solving
in the continuous versigrfrom the canonical equations for Methods for the preferred equations are those most efficient,
x; andz;, but it represents an independent extremum condi@lthough they _stlll havg some shqrtcomlngs: DP is restnctgd
tion associated with the optimal choicetsf In autonomous {0 Problems with low dimensionality of state, whereas maxi-
systemsH"=H""1, i.e., the energylike Hamiltonian is con- MUM principles do not generate optimal profit fun_ctlons di-
stant along an optimal discrete path. In nonautonomous sy£ctly- The control theory approach used here differs from
tems, only the enlarged Hamiltonig80) is constant of the the traditional approach encountered in mechanics, in which

optimal discrete motion: the value of this constant alwaygiamilton-Jacobi equations are solVE]. _ _
~n—1 We begin with the basic numerical method in which the
equals zeroH" *=0.

The boundary conditions are determined as vanishing sta[—)P is applied. In the control theory, both continuous and

tionarity conditions for the extremum @& with respect to discrete processes with a single independent variable can be

end state coordinates and times. By applying ©d), which treated in the framework of a common discrete formalism.
; : €S. By applying (&), v As we aim to work with a discrete set of equations, in the
links the functionsV and P, in an equation defining the

variation of SV d by end stat continuous case prior discretizing of the process differential
ariation o caused by end states, equations is required. Then, it is appropriate to focus on

st1 N st1 N multistgge optim!zation. Here we descrik_Je the generation of
dS¥=> —gdx'+ >, —5dx, (40)  the optimal functiorV"=maxSas a quantity directly related
=1 % =1 X to the optimization criterion. Assume that at the stage
we obtain profit D"=D(x",t",u",6",n) is given; in our caseD"
=T56", where tildes over the symb@" refer to the gauged
StLapN oG StLyapN 4G profit in Eq.(22), and hence to the optimal functif' rather
dSN=i21 (W+ W) d7<,N+|21 (&”TJF F(;) dx’. than P". (To deal with the optimal functiorP", the bare
- I 1 - I I

profit D"=fg6" should be used.The total profit of the
n-stage subprocess BD¥=3Tk6¥, fork=1,2, ... n. With
(In these equations*=t.) Hence after invoking the defi- the state equations and local constraints at our disposal, any
nition of adjoint variables, Eq33), data of D"—analytic, graphic, or tabular—are sufficient. It
s+1 s+1 is, however, important that the data Bf" represent this

G JG ; ; ; n
dsi= i e 22 50| g0, (42 function completely in terms of the stai®, time t", and
iZl (éf)'(,N ' ) ' .21 ax ) “42 controls (1", 8"). Data of optimal function®/*,... v",...,.vN

are generated over subprocesses composed of the stages

(41)

Setting to zero respective partial derivatives of the perfor-, ... pn, ... andN.
mance functionSY for one end, either fon=0 or for n For the given set of difference constraint®), each profit
=N, yields for free-end state variables function of the problemP" or V", is found from Bellman’s

equation of dynamic programming, E@®5). This equation

N 0 K . .
n_9G - 0 9G" links the optimal functions/" and V"~ or P" and P"?!
zi=—x, 1#B8, zj=—>0p, I#a, (43 ! | :
IX; IX; with the related profit at the stage The simultaneous gen-
eration of data fov" andP" is due to the fact that both these
and for free-end time functions differ by the path-independent increment of the
N 0 state functionG. In terms of V", as the quantity directly
n_ 96 o 96 connected with the optimization criterid® the recurrence

equation(25) may be written as

Equation(43) prescribes boundary conditions for the adjoint negny — [negn N gn n—1¢gn_Fnegn 0y gn
vector 2", and Eq.(44) prescribes boundary conditions for VXD LTE;,,X{D (LU ) +VE RO UN) 60

the HamiltonianH". As expressed in Eq43), if the Bth ’ (45)
component of the final state vectoa{?, or the ath compo-

nent of the initial state vector?, is fixed, the respective where the symbdk" denotes the enlarged vectof'(t") and
component of the adjoint vectozg or zg, is undetermined. the tilde over the symbdD" refers to the gauged profit in-
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cluding the effect of the state functid®. As shown by Eq. pointsX (different nodes of the grid The computer outputs
(22), the gauged profi5”=~f80” is a discrete counterpart of are the DP tables which contain only the optimal data:
the continuous profit9). Vi(®), 64(%), andul(X).

By an iterating procedure starting wi¥’=0, a function Forn=2 (two-stage procegsas well as for the largar,
sequenc®/"(X)=V"(x,t) is obtained fon=1,2,... N, asa the procedure is analogous but uses the recurrence equation
solution to Eq.(45). Organization of computations requires a (45) in its complete form. The functiod™ ! is known in the
grid of X in nodes of which data of optimal functions and form of tables describing the previous computatigios the
optimal controls are computed and stored. A total number ogascade witm— 1 stages When its data are used, a diffi-
stagesN, is assumed. The numerical DP algorithm generategy|ty can appear, which is called the “danger of the grid

the potential functiorv"(X) describing the total profit for the expansion.” This means that for some forms of the rate func-
n-stage subprocess from the functivfi1(X) of then—1

stage subprocess and the state transformations,(E).
V"(X) is obtained by maximizing the sum of the optimal
profit of all previousn—1 stages(the optimal function

V"1 and the nonoptimal profi" at the stage. To deter-

mine the functionv"(X) exactly for a definiten, we would : . -~

have to numerically(d)etermin)e/ its values for every value olIhat described by the |nequalii§($>_<$x,| ' n

X, an impossible task. Therefore, we must determine these_ The procedure leads to .the optimal values/8f 6", and

values on a discrete subsetigfand use the data in the way U for €ach node of the grid &, for eachn. These values

that enables evaluation ®(X) everywhere. This is accom- &€ stored as the discrete representatl_ons of the optimal func-

plished by an interpolation. The discrete subset of controlgions V'(X), 6"(X), and u"(X). Coordinates of the trans-

u" is treated in a similar way. For example, when the conformed statesT"(X)=%—1"(X,u") 6", can also be stored.

strains imposed on" satisfy the inequality* <u"<u*, the  The computations terminate for=N. Then, by a backward

tested variables" may assume only certain discrete values.procedure which starts from the given final poki, one

This refers to the linear grid of controls. obtains an optimal solution for the sequence of the optimal
The first optimal functiony*(X), and the corresponding controlsu™, uN~2,...,u* and §V,6N"1,...,6%, and the opti-

optimal controls fom=1 follow from the application of the  ma| discrete trajectoryg™,xN1,... X1, X°. The sequence of

tionsf the computation o¥/"(X) will require the knowledge

of valuesV" (%) for X located outside the rangg=<%x
<%, , which was required fow"(X). Therefore, to evaluate
V"(X) within the required range, it may be necessary to de-

termine the function/"~ (%) within a boundary larger than

initial condition V1(X)=0 in Eq.(45); this yields the optimal profits describing the whole process and all its
subprocessed/N, VN1 ... V1, also follows.
V%) =maxD(x,ut, o)} (46) A virtue of _the DP method is that it always leads to the
" gn absolute maximum, and, as opposed to other methods, an

increase in number of constraints simplifies the numerical
solution obtained with a computeffewer points to be
tested. The functions describing the profit and state transfor-
_ mation need not be continuous or analytical;, they may be
{u(%), 01 (%)} =arg maxD*(X,u', 6)}. (47 given in a graphic or tabular form. Also, the two-point
ut, 6t boundary values do not cause problems, as the recurrence
equation is not influenced by boundary conditions. Large di-
To find these functions, the computer chooses the first pointnensionality of the control vector does not cause essential
say X=A6=(A,8,A,5), assumes the firat=(E;v,E,v), troubles. There exists, however, a very serious difficulty con-
and compares DY(AS,E;y,E,y) with DY(AS,(E; nected with the use of the dynamic programming. This is the

+1)v,E,7), for a fixed?, in agreement with Eq(46). The so-called “curse of dimensionality,” referred to the large

larger of these values is stored, and, in turn, compared witfimensionality of the state vectd, Clearly, the number of
DY(AS,(E;+2)vy,E,y). This process is continued until the computational points, and hence the memory requirements

. . for the computer, increase tremendously with the state di-
whole discrete set of controls' is exhausted. The largest of mensionalitys. Problems withs=1 ands=2 are quite easy

the stored values db* is the maximum oD with respect 15 solve numerically, problems wits=3 may be trouble-

to u! for the fixed discrete poir and for the fixedfl. At some, problems witls=4 are already serious, and problems

the same time, the coordinateswdfwhich maximizeD! are  with s=5 are practically intractable if good accuracy is re-

stored. The computations are then repeated for another fixeglired. Thus the numerical dynamic programming can effec-
value of ¢, and the best profit®* are compared until an tively be applied only to problems characterized by the smalll

optimal 6" is found for whichD? is the largest. This leads to dimensionality of the state vectd, problems of large di-
mensionality, such as those encountered in the static optimi-

; H1 i 1 1
:Eg ﬁgzglﬁiggz'rggm{[bﬂ:’; It?ersisltl?r?gtctg:)r d"?ggtzs’ I;lr zation, are excluded. In the latter case, other methods, espe-
) L cially maximum principle algorithms, must be applied.

and 6*, which maX|m|_zeD1, are stored. Sometimes, however, a dimensionality reduction is possible

Analogous operations are next performed $or ((A;  in DP problems. For the problems considered here, a dimen-
+1)3,A26), ((A1+2)6,A26), and so on. This leads again sjonality reduction is possible, among others, in autonomous
to the maximum oD* and the optimal values af* and#*.  systems, in view of the constancy of the discratalong an
The data of the same quantity differ as they refer to variousptimal path.

and
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For V" regarded as a production profit, a net economick,(x",x"~ 1 t"t"" 1 u") =0
profit, or the difference betweev" and the “time penalty
cost” h(t"—t%, can be defined. We will designate by an [state equations, Eq.36)],
asterisk subscript the modified profits or costs of this sort,
and will focus on their properties in the case of the constant,(x" 2" z7~1t" t"~1 y") =0
Hamiltonian "~ 1="H. (This case is both the most impor-
tant and the simplestThus, we will deal with optimal func- [adjoint equations, Eq(37)],
tions describing net profits/] =V"—h(t"—t% or with
analogous functions describing net cod®]=R"+h(t" Fa(HMH L xM 2" t"t" 1 u") =0
—19), both criteria being equivalent. The quanthyis the

constant numerical value 6{". It describes the decrease of [rate change ofH"" !, Eq. (38)],
the process profit when the process time is increased by one
unit. Fs(x"t",z2""1,u™ =0 [extremality of H"" 1, Eq. (39)].

For the net profiD? =D"—h#" the optimal behavior at

the stagen is governed by the sequence of the asterisk funcThese are algebraic equations which should be solved with a
tions: Vi,...v", .. VN1 andVY. An optimal function ~computer. Note that in the case of an autonomous process,

obeys the equation Eq. (38) simplifies to the formH"=H""1.
Typical optimal control problems lead to two-point
V:(x“,h)zmax{ﬁi(x“,u”,0”,h)+V2‘1(x“ boundary conditions, and procedures matching these bound-
" gn ary conditions should be designed. Contrary to DP algo-
Nn rithms, two-point boundary conditions increase the difficulty
—f(x"uM) 6, h)}. (48) of the numerical solution when the maximum principle is

) used. Due to a strong analogy with Pontryagin’s algorithm,
It differs from Eq.(45) by the presence of thivecuolrather both trial and error procedures which deal with two-point
thanX=(x,t). Because of the constancy®f' " “=h alonga o ndary values and control improvement procedures are
discrete optimal path, the state dimensionality of the problemyentical with those applied in the standard continuous algo-
described by Eq(48) is decreased by 1 in comparison with (it [3,4,21. Methods of trajectory improvement in the

that described by EC{-45r)]- _ state space and gradient methods in the control space are
The profitsV" and V} preserve a number of the basic gffective.

qualitative properties of théeconomi¢ production profits Quite generally, an approach transforms E@§)—(39)

and the total profits(in the cost representation this is true for jntg a final set,

the optimal cost function®"=—V" and R} =-V}.) For

multistage control processes, the optimal profits generated by Ey(x"x""1 2" t") =0 (49)

the dynamic programming always have the structure of the

sequence of function§"(x,t) or their dualsV} (x,h). The  and

profit functions V"(x,t) and V}(x,h), or cost functions

R"(x,t) and R} (x,h), which describe production and total Fo(x",2",2" 1, t") =0. (50

profits (costg of processes with one independent variable

(time or length, are related by a Legendre transformation From this set the state and adjoints before rlie stage,

with respect to this independent variapks8,19. The limit-  x"~! andz"~%, and all other quantities entering the stage

ing case of a continuous process is characterized by the funefe determined, thus the computer may pass to the stage

tions V(x,t) andV, (x,h), which are mathematical equiva- — 1. This backward procedure is necessary from the practical

lents of Hamilton’s principal action and the “abbreviated viewpoint in the case of a complexonlineaj dependence

action” of classical mechanics or related phase functions irof the rate functions on the staxé.

optics [8]. The relation between the optimal cost functions

generated by the DP and Pontryagin’s maximum principle is  \/; exTENDED APPLICATION TO MULTISTAGE

now well understoocﬂ_ZO]. The optimal trajectories of a con- THERMAL MACHINES

trol problem are equivalent to mechanical trajectories in me-

chanics or light rays in optics. The use of dynamic program- We begin a brief review of applications of HIB equations

ming for constructing the finite-time potentials of discretewith multistage systems in which work can be produced by

and continuous control separation processes has been suaascade thermal machines operating sequentially between a

marized[5]. fluid and a bath, i.e., an infinite reservoir. The multistage
Now we outline the second basic numerical method. Itprocess is, in fact, a steady sequence of Novikov-Curzon-

applies the discrete maximum principle with the energy-typeAhlborn engines(NCA processeg22,23). The sequential

Hamiltonian (31). The necessary extremum conditions areNCA process is a finite-stage counterpart of the recently con-

Egs. (35—(39) with ¢"=t"—t"~1, whose form suitable for sidered continuous proce$24]. The system contains the

numerical considerations is driving fluid with gradually decreasing temperatures
TL,...,TN: the environment at the constant temperaftife
Fu(H"1x" 2" 1t u")=0 the boundary layers which act as thermal conductances; and

the set of the Carnot engines?,...,.CN, which generate the
[definition of H""1, Eq. (35)], mechanical work at each stage An analytical formulation
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of the multistage problem deals with maximizing of the work nondimensional conductan@/y=g"/(cG) coincides with
criterion the so-called number of transfer units at the stage well-
known engineering quantity.

A generalization of the above equation includes the effect
of mass transfef25]. In this case the power intensity func-
o ) . ] tion f§, which generalizes E¢51), has an involved form.
where the coefficient=pc/(a'a,), pis the fluid's density, gome redefinitions are suitable; molar quantities are used

c its s_pecific_heata’ the overall heat transfe_r coefficient gnd the Lewis analogy is applied, which links the heat and
associated with the overall conductagenda, is the total o asq yransfer coefficients. In this case, the funcfirhas

EXCha’?ge area per unit V°'“”?e of the flgRH]. Our task 'S units of a molar work, associated with nondimensional time
to achieve an extension of this problem that could take into

account variability in time of thermal and transfer coeffi- T’ who_se mtervglenzg”/G_. A desc,;rlptlon based on the
cients(such as the specific-heat capadityr the heat trans- USu@l time requires applying=pc/(a’a,).] There are two
fer coefficienta’) and to include mass transfer. The gaugings’tate varlable_é' and X (concentrauo)] and two controlsu
functionG=0. The produciu” (in units of the temperature @nd v. The first control is related to the heat flug~
equalss —q"/g", whereg" is the overall thermal conduc- —9CU, whereg is the mass transfer conductance in molar
tance at the stage andq" is the heat which drives theth units. The second control is related to the molar mass flux,
Carnot engine. The contral” plays the role of the discrete M= —gv. For eactn, the intensity of power production per
rate of the temperature change of the fluid in timérhe  unit of 7is

N

N
SN=D fo(T"uM "=, ¢
1 1

e

_I_r]+—)(w]— 1) u“&“, (51)

-1
T+ C%-i-CpV cu
w 92 92 g
fo(T,X,u,v)=—=cu—cTv+ —c®T®—| —c®—c,v|T® —
g g g g1 91
T+=—|c=—+cpv| cu
g g
gv| DXHEv/anT\  (81R/gc%) . gv| DX (avigp)]| (~92R/92¢)
(1+X)+% x+g— (1+xe)<1+x>(xe— g—)
1 2
X
[1+X+(gv/gy)] [1+X®—(gv/gy)]
\ 2
xx(1+x+g— XX 14 X8 g—v>
01 2
(52
|

With this function, applied agj in the first sum of Eq(51), - T [n(TYThH?
we can find a maximum for the cumulative mechanical work ~ V=—R=c(T'=T)—cT Inm— T ——=r7r In(T/T)
when a finite-resource fluid changes its thermodynamic pa- (54)

rameters in a finite time between two assumed states. The

above power formula reduces exactly to that of pure he . .
Ve pow . uces exactly pu a'i‘he last terms in Eq$53) and(54) are nonclassical; they are

transfer when the molar flum=0 [25]. > .
For an analytical result, i.e., for the problem of pure heatcaused by finite rates which decrease work produced and

transfer whose functioriy appears in Eq(51), Bellman's Increase work consumed.

. : _ For Eqg.(52) only a numerical solution is possible. In this
equa.t|on(25) with l.D_V has recently .bee'\rll S.OIV@(S]' The case a computer procedure generates tables of optimal con-
function of the optimal work production/™, is

trols and optimal costs through a direct extremizing proce-
dure contained in the recurrence equation

0\ IN
N_ N_ 0 N
VN=—RN=¢(T0-T )+CTeN[1_(W) RL(T"X") = min {[—fo(T"X"u",v")+h]¢"
uvnen
N[1— TO/TN 1IN 2
{N[1—( )1} (53 +RIH(T —u"e", X"—v"6")}, (55)

T N (T TN

where the power functioriy is given by Eq.(52) and the
This potential is associated with constafftu” increasing Hamiltonian constanh serves as the Lagrange multiplier of
linearly with T", and the optimal trajectory satisfying the the time constraint to eliminate” from the working set of
rule T"=(T" 1T 1)¥2 for arbitrary stagesi—1, n, andn  original state variables. Th¥-free truncation of this equa-
+ 1. For the continuous limit we find tion serves to generate numerical generalizations of functions



1530 STANISLAW SIENIUTYCZ PRE 60

(53) and(54) when both the transfer coefficients and the heat W'S‘—WQ‘l
capacity vary along the process path, and an analytical solu- T=X3—X2(W§ A19), (59
tion cannot be obtained.

The classical thermodynamic work is recovered in a “mltwhereia, is the partial enthalpy of moisture in solid a8

of a reversible process, for an infinite duratiad# ). The A .
classical work represents an exact evaluation of the maxigoﬁdG n/1 islz ftlrl:is?afl'sh(renztsstgt;ttgt%r?sh ggre‘t;itﬁﬁgr dg?;litsion
mum work. production for |nf|n|te-S|z.e. system_s only, or for ariablesT" andX", and the gas enthalpy functicbgﬁ which
systems with excellent transfer conditions. This result proveé.’ g @M g - )
that classical thermostatic limits are too low to be realistic,'S evaluated in terms of these decisions. The state equations
and finite-time limits should be more useful in practical contain also complex state dependent equilibrium functions
evaluations. id(WZ,TD) andXZ(W2,Tg). They describe the enthalpy and
humidity of gas in equilibrium with solid, and are given by
semiempirical formula§27].

VII. DRYING SEPARATION PROCESSES WITH The discrete maximum principle, Eq85)—(39), is used
COMPLICATED EQUILIBRIA to solve the problem of minimum cog6). The Hamiltonian
We now consider another group of processes, such dsnction is

separation processes and chemical reactions which, as arule, _ _
. . h 1(Wn Tn Zﬂ 1 Zn 1 -I—n Xn)
do not generate mechanical energy although they may y|elb' s'is 1l %2 o lgifig

valuable products. Here we are focused on optimization of _ n—lc—l{in(-l—n XM — W, D)

complex processes of drying and adsorption which constitute 1o Vatige shses

an example of processes described by highly nonlinear Stfite — iCV(XS—XQ(WQ ,Tg))}+zg—1[xg—xg(wg T]
equations. These processes run frequently in cascades of ide-

ally mixed fluidized beds, and are characterized by strong ~ —[eby(Tg,Xg)+h]. (60)

nonlinearities following from complex solid-gas equilibria
(sigmoidal curves which do not approach straight lines everror thisH the canonical se36)—(39) is constructed and its
in limiting cases. numerical solution is obtained for optimal controls, optimal

The performance criterion is usually the sum of the ex-trajectories, and optimal costs. Drying of silicagel by air in
ploitation costs measured by the available ene(ggx- the three-stage cascade of fluidized beNs=@) is studied
ergy”) of the drying agent and the cascade cost understool1,28. The initial state of solid and the final solid moisture
as the investment cost of all stages. Neglecting fixed parts afontent are prescribed, whereas the final solid temperature is
these costgwhich do not influence the basic regulthe  free. The multiplier of the process duratidn,which is also
profit form of the performance index may be written as an intensity index of the optimal process, is changed in the

range 0.42-4.20 kJ/kg.
N The optimal control data show the following properties:
SN=— 2 [e bg(Tg ,xg) +h]6", (56)  The optimal gas temperatur§§ decrease along the optimal
n=1 path. The optimal gas humidité@ decrease along the opti-

) N ) ) mal path. For a very smali the valuesXg attain the limiting
whereby is the specific exergy of the drying gas amts the  epyironmental humidity X¢=0.008 kg/kg). The optimal di-
economic value of the exergy unit. Economic consideration$yensionless gas flon#=AG"/S are unequal along the op-
for fluidized beds link the numerical value of the time con-tjmal path. The largest flows are at the first stage and the
straint multiplier,h, with the unit apparatus price. THepart  |owest at the last stage of the cascade. Each fiBvwde-
of the optimization criterion represents the investment costg,eases wheh increases, corresponding with the increase of
per mass unit of the dry solid product. An approximate eX-ne process intensity with. Otherwise, foh=0, very large
pression for the criteriof56) is the quadratic objective with  gn 516 obtained corresponding to drying of the solid by the
constantA, B, G andh, environmental gas.

The optimal trajectories of the controlled drying process
N L N oee 1 N ven N with a free final temperature of solid depend substantially on
S'= _nzl [ZA(Tg= T+ 3B(Xg—X)“+C+h]6". the factorh which is the constant of these paths. For srhall

(0.42 kJ/kg, the state transitions are through regimes of low
(57) oo : - .

temperatures of soligwith possible minima ofT), consis-
tent with the use of gas with the lower exergy potentiaiv
T4 and largeX,, which are close to the ambient parameters,
T¢ and X®). For largeh, the state transitions are through
higher temperatures of solid, with possible maximaTgf
Such solutions apply to the drying of sugar, porous sorbents,
and T-sensitive biological materials. These materials should
be dried relatively fast, but otherwise their final temperature
o o —n should not be too high. The results show that apparatuses of

—iw(Xg—=Xg(Wg , TO)} (58 Jarge unit cost should be designed for intensive optimal pro-

cesses, to assure short process durations, so as to avoid basic

and mistakes in the design of new equipment.

N

The state variables at the stagare the outlet solid tempera-
ture T{ and outlet solid moisture conteW, . They appear in
the discrete state equations

To-T10°t

g = Cs {ig(Tg, Xg) —iS(Wg,T3)
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VIIl. TWO-PHASE SYSTEMS SPONTANEOUSLY
RELAXING TO EQUILIBRIUM

Here we are dealing with relaxation processes in whic

state variables are linked by conservation laws for the en-
ergy, mass, and momentum. For processes of this sort, an
approach which applies Lagrange multipliers to handle de-
pendent rates is required. The system contains two phases
and y which relax to the mutual equilibrium. Applying the with the functionsS and H,,
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In terms of the current nonequilibrium entrogyas the op-
timal function, the Hamilton-Jacobi equation of the depen-
dent variable theory is a truncation of the general standard
orm

S
—+
at

S IS

e 09

(o8

xV,xfs,t) =0,

explicitly independent of the

theorem of a minimum of entropy production to the relaxinggme t |n linear adiabatic systems, withindependent resis-

system with heat and mass transfer between its two Su%ncesRV

systems, we find the canoniodlamilton’s) structure of dy-

namics, and show a self-consistent way to derive this dynam-

ics. The dependent variabless=(n,e)—(n*,e*), are
deviations of mole numbers), and energye, from their
equilibrium valuesn* ande*. In a forward DP algorithm

we minimize the entropy production or maximize the en-

tropy functional
f
S=5'— J: [1RY(X): vV + 3R(X):vOVo+ W (x?,x%)
t
+ u- (VY4 v0)]dt, (61)

where the superscriptg and 6 refer to two phases, the su-
perscriptf to final states¥V is the secondstate-dependent
dissipation function, and®R” and R’ are x-dependent resis-

andR?, the Hamilton-Jacobi equation applies in a
quadratic time-independent form
) —IW7ix'x"— tW?:x°x?=0,

%L:(
(66)

where L=(R”) " '+R% ! and W’=T"Y(R?)"I'?. This is
satisfied by the entropy potential, E¢63). In the phase
space, for linear systems

S IS

S IS
X’ ax®

X’ ax®

H,o(p7,p% X7, X% =3L:(p"=p?)(p"—p%) — W 7:X7X"
(67)

This equation yields the canonical set in the form of depen-
dent Hamilton’s equations which are linear and satisfy the

— 1w x%x?=0.

tances. The balance constraints are handled by the Lagrangenservation laws identically.

multiplier u’. The variablesx=(x”,x°) andv=(v”,v°) sat-
isfy the simple differential constraints
x0=v?.

X’=v7; (62

In terms of the original state vectd@r=(n,e), and for
Gibbs equation defining the nonequilibrium entropy as an
additive quantity over the homogeneous subsystems

Our goal is to show that the quadratic approximation of the

thermodynamic entropy
S(x,n*,e*)=8*(n"",e”" ,n%" &)+ p* - (X7 +x%)

— 307 x"XY— 3T %:x%%, (63
wherel is the Hessian matrix and the asterisk refers to th
equilibrium, which is a suitable extremal function for the
linear dynamicgwith x-independenR?” andR?). Otherwise,
the approximation will be insufficient for nonlinear dynamics
with state-dependent resistances. The HJB theory along wi
Belman’s equatiori25) or the stage criteriof23) provide an
efficient way to treat such nonlinear systems.

Defining the potential of integral entropy producti®
=min(S-9=5-P, we arrive at the forward HJB equation
(7) in the form
s

(o

ox”

S,
max { — +
s o ot
o

IS,
sVo—RY(X”):vvY

v7+
X

v v
—IRO(X%): vV — W (X, X)) — ' - (V' + V)t =0,

(64)

dS=dS7+dS°=p”- dii”+ p°- di’, (68
the dynamics of phase has the canonical form
dan” oJH, dp” IH,,
===, = =y (69
dt  dp” dt an?

éNhiCh, in the case of the linear dynamics, is governed by the

extremum Hamiltonian of Eq67). (An analogous dynamics
holds for the phas@.) The canonical equations describe re-
laxation of mole numbers and energy and their thermody-

tLaamic adjointsp (temperature reciprocals and Planck poten-

tials) to equilibrium. For the linear relaxation of the phage
consistent with the quadratic entropy function, E&g),
dn”

dt

dp”

YRHY _RY
KY(n n7), at

KT(p*=p”). (70
Thus the equations of motion for the state varialfieand
their thermodynamic adjointp complement the canonical
set(70). Our analysis shows that the linear relaxation of the
state variables is governed by the transfer matkX
=(R”)"I'” and that of the thermodynamic adjoints by its
transposeK "=T"Y(R”) 1. Only in the particular case when

K is symmetric are relaxations of state variables and their
thermodynamic adjoints governed by the same common ma-

where v? and v° are the two dependent controls and thetrix K. The analysis shows the coherence and elegance of the
S,-free part represents the negative of the thermodynamieariational approach.

Lagrangian. The HJB formulatiof64) is useful for an arbi-
trary dependence of resistance functions on the statef
course,dS,/dt=9W/st=0 for adiabatic thermodynamics.

In nonlinear systems witk-dependenR? andR? in Eq.
(61), forward recurrence equatiof®5) or (45) are applied to
solve the quasilinear HIB equatioi®4) or the related
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Hamilton-Jacobi equatiof65). In terms of the optimal cost e (2, )
function S,=— V", which represents the mimimum entropy R(X,y', X',y )Emmﬁ Ag Tp(X)(1+u)dx  (74)
production, the recurrence equation is !
satisfies the HIB equation
Sh(xM = min {15(x"u"u' M) 6"+ S)H(x"— VoM,

vl o, uh JR IR -1 2
0", (71) 07—)(4—mu WU—AO p(x)(1+u“)=0. (75
where§"=t"—t""1 andlj= — fj is the thermodynamic La- Extremizing the Hamiltonian in the above HJB equation
grangian at staga. At each stage, yields as an optimal control
A, JR

lo(X,V, " )= 2RY(X):vIVY+ 2RO(X?):vOVo+ W (X7, x%)

+u' (VY VO). (72

U= 2000 dy (79

This optimality condition is written in the form of the tan-

Here the Lagrange multiplieps’ are extra coordinates of the 9€nt law of bending for a thermal ray,
control vector. To reduce the problem’s dimensionality, the d IR
o . R y
trivial conservation constraint is eliminated and the set of p(x)&=§Ao(9—EC, (77
independent state variables=x” and controlsv” is used. y

Note thatV"=V} wheneveH"=0; thus the potential func- \wherec is a constant which may be both positive or nega-

tions S, andS). generated by E¢(71) or its asterisk coun- tive. The constancy of the partial derivativ&/dy follows

terpart represent the same quantity which describes the minfrom an explicit independence of the model Lagrangian with

mum production of the classical entrofy in the nonlinear  respect toy. A suitable integral formula for the bending con-

case. This quantity should be subtracted from the referencgtant in terms of the deviatiopn—y° is

final entropyS' to get the actual entropy of the syst¢g9]. . 1
o~y [ oonax| L as

IX. HEAT RAYS ALONG PATHS OF LEAST g

RESISTIVITY IN INHOMOGENEOUS MEDIA Expressing the optimal contralin the HIB equatiori75) in

When a thermal field in a rigid medium is imposed by Iﬁgmcsor?tﬁrejoﬁilgz)glisgs the Hamilton-Jacobi equation of

fixing the thermal gradient, the flow of thermal energy can be

described in terms of “thermal rays,” which are the paths of R\2
heat flow in the direction of temperature gradient. Their de- —+ Ay p(x) ( ° | - 1} =0, (79
viation from straight lines results from variable thermal con- 2 2p(x) dy

ductivity [30,31]. The thermal rays travel along paths satis-
fying the principle of minimum of entropy production, which
seems at first glance quite different from the well-known

Fermat prln_C|_pIe of minimum time for_ optical rays. HOV‘.".tion of specific resistivityp(x) is too complicated, the inte-
ever, the minimum of entropy production assures the mini-

mum resistivity of the path. which causes the maximum 01grals cannot be evaluated analytically. Hence the role of the
y path, discrete approach which solves numerically Bellman’s recur-

heat flux through the medium and makes the residence tim :
of heat in this medium as short as possible. This, in fact, fence equation of the problem

very similar to the Fermat principle for propagation of light. R(y",x") = min{Aalp(xn)[l+(un)2] on
Our purpose is to investigate this phenomenon by the method
of dynamic programming.

We use the reference frane)) in which the local resis- +RY Iy —u"o",x"— 6"}, (80)
tivity of heat flow changes along the axis the axisy is _ ) ,
tangent to a surface of constant specific resistipitandu where ‘?nzxn_)r(]n . This cannot be analytlcall_y solved for
— dy/dx is the local direction of the gradient of temperature @1 arbitraryp(x"), thus the sequence of functiofS' must

reciprocalT 1. The shape of thermal rays can be described?® 9enerated numerically. Yet, in the limit of an infinite
as an optimal control problem for a minimum of the resistiv—number. of stages, an analysis ShO\.N.S that the potential func-
ity integral tion satisfying Eq(80) takes the limiting form

where the second term of the left-hand side expression is the
optimal Hamiltonian. The solution to this equation can al-
ways be broken down to quadratures. However, if the func-

T

(_S): J;tzAalp(X)(l+u2)dX, (73) R(X,y): fonalp(X,)dX,

-1

+Aal<y—y°>2( [ o ronax| @

subject to the contral=dy/dx. A, is the constant area of
projection of the heat flux tube cross-sectional area on the
surface of constant resistivity. The minimal resistance funcit may be verified that the above function satisfies both the
tion of the problem defined as HJB equation(75) and the Hamilton-Jacobi equatidii9).
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The numerical solution to Eq80) for a finite number of rie. Due to the(nonrelativisti¢ causality, the real path of

stagesn represents the finite-stage generalization of the soignition is the one along which the fire first arrives at a point,
lution (81); this numerical solution automatically accom- as for all subsequent instants the grass will already be burned
plishes the numerical integration required in Eg{l). out at this point. This means that the system satisfies the

Fermat principle of the least tin{d0].

The simplest approach requires that the propagation speed

X. PROPAGATING DIFFUSION-REACTION FRONTS v is given as a known function of coordinates and directions;
IN'ANNULAR MEMBRANES when this condition is satisfied, the simplest approach can be

Recent research shows that the propagation of the Conceﬁpp”ed in it§ natural form, which deals with ordinary differ-
tration fronts agbio)chemical waves also satisfies the prin- €ntial €quations. For the lumped system, the speedn be
ciple of minimum time. The dynamic programming approachobta'”ed from a.ba5|c approach yvhlch deals Wlth the under—
leads to a HIB equation and its characteristic set for chemicgIng autocatalytic model of reaction and diffusion described
waves. All these equations describe the link between th8Y Partial differential equations of the typa7]
constrained wave fronts and associated “rays.” Usually,

“‘geodesic” constraints caused by an obstacle influence the d.u=Lu+N(u)+DV?u. (82
state changes and the enterithgaving conditions of a ray

as a tangentiality condition for rays that begin to slide over, Eq. (82), u is the set of fieldsL. andN are, respectively,

the boundary of an obstacle. Thus an analysis can determiqﬁe linear and nonlinear reaction dynamics, adds the

complex shapes of rays in inhomogeneous media. e . ; .
Self-propagating chemical fronts were discovered by eX_transport(dn‘fusmn) matrix. The analysis proceeds by as

eriments in reaction-diffusion systems occurring in ﬂuidssuming that a constant wave profile emerges and propagates

gn d porous solids. Autocatal tig chemical s s?ems wer é/vith a constant speed. Rectilinear, solitary wavefronts that
P " y Y ropagate with a constant speeglare one-dimensional so-
shown to be responsible for the wave propagation, and auto- .. - . . ;
. ; . . utions, u(x,t)=w(x—vgt), of the ordinary differential
catalytic models were applied to provide expressions for the .
; Lo ; équation

wave propagation spedd?2]. Excitability properties were
recognized to be responsible for wave behavior. Spiral waves
especially drew considerable attention because of analogous Lw +N(w) +Dw"+vew’ =0, (83

phenomena in biolog§33]. A number of dynamical proper-

ties observed in experiments were substantiated in terms @fyiained from Eq(82) for u=w(x—v,t), where the prime
interactions of the elementary wave properties with theefers to differentiation with respect to the traveling wave
chemical system geometry. It was Winfr®] who sug- oo rginater =x—v,t, and the rest state correspondstto
gested first that the shape of the spiral waves should be alg The solution to Eq(83) represents a shape traveling

involute of a small circle, the “core” of the spiral wave. An with a speeds,; diverse models yield a constant spagcbr

involute of a given curveC is a curveC* which lies on the ; :
a state-dependent[37,41. The physical propagation speed
tangent surface o€ (the surface generated by the tangent, _ qy/dt depends, in fact, on both the diffusion coefficient

lines toC) and intersects the tangent lines orthogonally. TheOf the autocatalytic species and the rate constants of auto-

breakthrough was achieved Whep real open systems and tQﬁtalytic reactions; it is a function of the rest state. To apply
so-called cqntlnuously fed unstwred reactc(GFUR) ap-  the propagation speed in the framework of the minimum
pegred, th'jCh madd_e_ of pl(\)lssml_e t_o St:“'déSChdem'Clal Wc?veﬁme approach, state coordinates must be assigned to each
under steady conditions. Noszticzies a '.[ | deve ope point of the physical space where the wave motion occurs.
the first CFUR with a ring geometry using acrylamide gel™ \yhen a function describing the propagation speed is
and created chemical pinwheels in that reactor. known, a HJB equation can be formulated. For a constrained

IA cr?err]nlcal pln;/vhenel\ll system ctopsgt;roé,a c_ll_rﬁular strip Ofproblem of minimum time in two-dimensional experimental
gel which separates two concentric s. The wave mo;s]ystems, a HJB equation is

tion can be understood as an interaction between diffusio
and kinetics[36,37. Chemical components diffuse into the
gel, react, and create a medium of excitable properties. Con- dTv(X,y,u) N dTv(x,y,uju (14 ud(xy)]t =0
centrations of species in the outer and inner reservoirs usu-mMaX — — mo(X,y) ] =0,
ally differ, thus resulting in radial concentration gradients “# Hxyltu dyNIt+u 8
and inhomogeneous properties of the excitable med28h (84)
The chemical species diffuse out of the front of the wave
towards the area of lower concentration, the concentration ohereu=dy/dx andT is the function being sought, which
autocatalyst builds up, and after it crosses a threshold limitglescribes the shortest transition time. The constraint
kinetics takes over. In effect, the concentration increaseg(x,y)=0 was built in, operative when the ray slides over
strongly due to autocatalytic reactions, thus building thethe surface of an obstacle; the corresponding Lagrange mul-
front of the wave. In inhomogeneous affbssibly aniso- tiplier is u. Note that the multipliers of the derivative3/dx
tropic media, the description of the propagation of theanddT/dy in Eq.(84) represent the properly expressed rates
chemical wave is a very difficult task due to the obstacledx/dt and dy/dt that satisfy identically the constraint
constraints on the state coordinates. Our analysis of the wav@x/dt)?+ (dy/dt)?=v?(x,y,u). The numerical solution
motion [39] treats the chemical system as a constrained opean be found with the aid of Bellman’s equation for the
timal control system which is analogous with a burning prai-minimum timeX, ",
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T(xy.x%y0)=v H(x=x%2+(y-y®2 (86
T"(y,Xx)= min

un, g, "

[1+u"b(x,y)]6"

Equation(85) allows for numerical generation of the func-
T v(x,y,uMu"g" . v(x,y,u") 6" tion T(x,y) for the case of constrained wave motions in con-
m ’ m ' fined regio_ns and in cqmplex media. Experiments confirming
@5 the '?ebr;aflslgﬁ of chemical fronts predicted by the theory are
available[33].

The solution describes straight rays in the simplest possible
case of a homogeneous medium. In a complex chemical me-
dium, the quantityT which describes the shortest transition
time is a constrained generalization of the simplest transition The author acknowledges support in the framework of
function of a homogeneous and isotropic medium in whichGrant No. TO9C 063 from the Polish Committee of National
the wave motion is with the constant speed Research.
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